3 research outputs found
Diagnostic accuracy and feasibility of patient self-testing with a SARS-CoV-2 antigen-detecting rapid test.
BACKGROUND: Considering the possibility of nasal self-sampling and the ease of use in performing SARS-CoV-2 antigen-detecting rapid diagnostic tests (Ag-RDTs), self-testing is a feasible option. OBJECTIVE: The goal of this study was a head-to-head comparison of diagnostic accuracy of patient self-testing with professional testing using a SARS-CoV-2 Ag-RDT. STUDY DESIGN: We performed a manufacturer-independent, prospective diagnostic accuracy study of nasal mid-turbinate self-sampling and self-testing with symptomatic adults using a WHO-listed SARS-CoV-2 Ag-RDT. Procedures were observed without intervention. For comparison, Ag-RDTs with nasopharyngeal sampling were professionally performed. Estimates of agreement, sensitivity, and specificity relative to RT-PCR on a combined oro-/nasopharyngeal sample were calculated. Feasibility was evaluated by observer and participant questionnaires. RESULTS: Among 146 symptomatic adults, 40 (27.4%) were RT-PCR-positive for SARS-CoV-2. Sensitivity with self-testing was 82.5% (33/40; 95% CI 68.1-91.3), and 85.0% (34/40; 95% CI 70.9-92.9) with professional testing. At high viral load (≥7.0 log10 SARS-CoV-2 RNA copies/ml), sensitivity was 96.6% (28/29; 95% CI 82.8-99.8) for both self- and professional testing. Deviations in sampling and testing were observed in 25 out of the 40 PCR-positives. Most participants (80.9%) considered the Ag-RDT as easy to perform. CONCLUSION: Laypersons suspected for SARS-CoV-2 infection were able to reliably perform the Ag-RDT and test themselves. Procedural errors might be reduced by refinement of the instructions for use or the product design/procedures. Self-testing allows more wide-spread and frequent testing. Paired with the appropriate information of the public about the benefits and risks, self-testing may have significant impact on the pandemic
Self-collected oral, nasal and saliva samples yield sensitivity comparable to professionally collected oro-nasopharyngeal swabs in SARS-CoV-2 diagnosis among symptomatic outpatients
Introduction
Containing COVID-19 requires broad-scale testing. However, sample collection requires qualified personnel and protective equipment and may cause transmission. We assessed the sensitivity of SARS-CoV-2-rtPCR applying three self-sampling techniques as compared to professionally collected oro-nasopharyngeal samples (cOP/NP).
Methods
From 62 COVID-19 outpatients, we obtained: (i) multi-swab, MS; (ii) saliva sponge combined with nasal vestibula, SN; (iii) gargled water, GW; (iv) professionally collected cOP/NP (standard). We compared ct-values for E-gene and ORF1ab and analysed variables reducing sensitivity of self-collecting procedures.
Results
The median ct-values for E-gene and ORF1ab obtained in cOP/NP samples were 20.7 and 20.2, in MS samples 22.6 and 21.8, in SN samples 23.3 and 22.3, and in GW samples 30.3 and 29.8, respectively. MS and SN samples showed sensitivities of 95.2% (95%CI, 86.5-99.0) and GW samples of 88.7% (78.1-95.3). Sensitivity was inversely correlated with ct-values, and became <90% for samples obtained more than 8 days after symptom onset. For MS and SN samples, false negativity was associated with language problems, sampling errors, and symptom duration.
Conclusion
Conclusions from this study are limited to the sensitivity of self-sampling in mildly to moderately symptomatic patients. Still, self-collected oral/nasal/saliva samples can facilitate up-scaling of testing in early symptomatic COVID-19 patients if operational errors are minimized.Peer Reviewe
Evaluation of accuracy, exclusivity, limit-of-detection and ease-of-use of LumiraDxâ„¢: An antigen-detecting point-of-care device for SARS-CoV-2
Purpose!#!Rapid antigen-detecting tests (Ag-RDTs) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can transform pandemic control. Thus far, sensitivity (≤ 85%) of lateral-flow assays has limited scale-up. Conceivably, microfluidic immunofluorescence Ag-RDTs could increase sensitivity for SARS-CoV-2 detection.!##!Methods!#!This multi-centre diagnostic accuracy study investigated performance of the microfluidic immunofluorescence LumiraDx™ assay, enrolling symptomatic and asymptomatic participants with suspected SARS-CoV-2 infection. Participants collected a supervised nasal mid-turbinate (NMT) self-swab for Ag-RDT testing, in addition to a professionally collected nasopharyngeal (NP) swab for routine testing with reverse transcriptase polymerase chain reaction (RT-PCR). Results were compared to calculate sensitivity and specificity. Sub-analyses investigated the results by viral load, symptom presence and duration. An analytical study assessed exclusivity and limit-of-detection (LOD). In addition, we evaluated ease-of-use.!##!Results!#!The study was conducted between November 2nd 2020 and 4th of December 2020. 761 participants were enrolled, with 486 participants reporting symptoms on testing day. 120 out of 146 RT-PCR positive cases were detected positive by LumiraDx™, resulting in a sensitivity of 82.2% (95% CI 75.2-87.5%). Specificity was 99.3% (CI 98.3-99.7%). Sensitivity was increased in individuals with viral load ≥ 7 log10 SARS-CoV2 RNA copies/ml (93.8%; CI 86.2-97.3%). Testing against common respiratory commensals and pathogens showed no cross-reactivity and LOD was estimated to be 2-56 PFU/mL. The ease-of-use-assessment was favourable for lower throughput settings.!##!Conclusion!#!The LumiraDx™ assay showed excellent analytical sensitivity, exclusivity and clinical specificity with good clinical sensitivity using supervised NMT self-sampling.!##!Trial registration number and registration date!#!DRKS00021220 and 01.04.2020