72 research outputs found

    Toward Novel Vaccines Against Tuberculosis: Current Hopes and Obstacles

    Get PDF
    Approximately 2 million people die of tuberculosis (TB) each year. The current vaccine, Bacille Calmette-Guérin (BCG), albeit widely employed, does not protect against adult pulmonary disease, and new vaccines are urgently needed to reduce the incidence of TB worldwide. New insights into the cellular and molecular mechanisms that underlie the interactions between Mycobacterium tuberculosis and its host have been exploited to develop novel vaccine candidates that recently have entered clinical trials. This review provides a brief overview of different approaches toward a new vaccination strategy and summarizes major challenges for the next decade

    Correction of the Iron Overload Defect in β-2-Microglobulin Knockout Mice by Lactoferrin Abolishes Their Increased Susceptibility to Tuberculosis

    Get PDF
    As a resident of early endosomal phagosomes, Mycobacterium tuberculosis is connected to the iron uptake system of the host macrophage. β-2-microglobulin (β2m) knockout (KO) mice are more susceptible to tuberculosis than wild-type mice, which is generally taken as a proof for the role of major histocompatibility complex class I (MHC-I)–restricted CD8 T cells in protection against M. tuberculosis. However, β2m associates with a number of MHC-I–like proteins, including HFE. This protein regulates transferrin receptor mediated iron uptake and mutations in its gene cause hereditary iron overload (hemochromatosis). Accordingly, β2m-deficient mice suffer from tissue iron overload. Here, we show that modulating the extracellular iron pool in β2m–KO mice by lactoferrin treatment significantly reduces the burden of M. tuberculosis to numbers comparable to those observed in MHC class I–KO mice. In parallel, the generation of nitric oxide impaired in β2m–KO mice was rescued. Conversely, iron overload in the immunocompetent host exacerbated disease. Consistent with this, iron deprivation in infected resting macrophages was detrimental for intracellular mycobacteria. Our data establish: (a) defective iron metabolism explains the increased susceptibility of β2m-KO mice over MHC-I–KO mice, and (b) iron overload represents an exacerbating cofactor for tuberculosis

    Mycobacterium tuberculosis and the host response

    Get PDF
    Mycobacterium tuberculosis remains a leading cause of morbidity and mortality worldwide. Advances reported at a recent international meeting highlight insights and controversies in the genetics of M. tuberculosis and the infected host, the nature of protective immune responses, adaptation of the bacillus to host-imposed stresses, animal models, and new techniques

    Differential requirements for the chemokine receptor CCR7 in T cell activation during Listeria monocytogenes infection

    Get PDF
    Effective priming of T cell responses depends on cognate interactions between naive T cells and professional antigen-presenting cells (APCs). This contact is the result of highly coordinated migration processes, in which the chemokine receptor CCR7 and its ligands, CCL19 and CCL21, play a central role. We used the murine Listeria monocytogenes infection model to characterize the role of the CCR7/CCR7 ligand system in the generation of T cell responses during bacterial infection. We demonstrate that efficient priming of naive major histocompatibility complex (MHC) class Ia–restricted CD8+ T cells requires CCR7. In contrast, MHC class Ib–restricted CD8+ T cells and MHC class II–restricted CD4+ T cells seem to be less dependent on CCR7; memory T cell responses are independent of CCR7. Infection experiments with bone marrow chimeras or mice reconstituted with purified T cell populations indicate that CCR7 has to be expressed on CD8+ T cells and professional APCs to promote efficient MHC class Ia–restricted T cell priming. Thus, different T cell subtypes and maturation stages have discrete requirements for CCR7

    Communication between Human Dendritic Cell Subsets in Tuberculosis: Requirements for Naive CD4+ T Cell Stimulation

    Get PDF
    Human primary dendritic cells (DCs) are heterogeneous by phenotype, function and tissue localization and distinct from inflammatory monocyte-derived DCs. Current information regarding the susceptibility and functional role of primary human DC subsets to Mycobacterium tuberculosis (Mtb) infection is limited. Here, we dissect the response of different primary DC subsets to Mtb infection. Myeloid CD11c+ cells and pDCs (C-type lectin 4C+ cells) were located in human lymph nodes (LNs) of tuberculosis (TB) patients by histochemistry. Rare CD141hi DCs (C-type lectin 9A+ cells) were also identified. Infection with live Mtb revealed a higher responsiveness of myeloid CD1c+ DCs compared to CD141hi DCs and pDCs. CD1c+ DCs produced interleukin (IL)-6, tumor necrosis factor α and IL-1β but not IL-12p70, a cytokine important for Th1 activation and host defenses against Mtb. Yet, CD1c+ DCs were able to activate autologous naïve CD4+ T cells. By combining cell purification with fluorescence-activated cell sorting and gene expression profiling on rare cell populations, we detected in responding CD4+ T cells, genes related to effector-cytolytic functions and transcription factors associated with Th1, Th17 and Treg polarization, suggesting multifunctional properties in our experimental conditions. Finally, immunohistologic analyses revealed contact between CD11c+ cells and pDCs in LNs of TB patients and in vitro data suggest that cooperation between Mtb-infected CD1c+ DCs and pDCs favors stimulation of CD4+ T cells

    Link between Organ-specific Antigen Processing by 20S Proteasomes and CD8+ T Cell–mediated Autoimmunity

    Get PDF
    Adoptive transfer of cross-reactive HSP60-specific CD8+ T cells into immunodeficient mice causes autoimmune intestinal pathology restricted to the small intestine. We wondered whether local immunopathology induced by CD8+ T cells can be explained by tissue-specific differences in proteasome-mediated processing of major histocompatibility complex class I T cell epitopes. Our experiments demonstrate that 20S proteasomes of different organs display a characteristic composition of α and β chain subunits and produce distinct peptide fragments with respect to both quality and quantity. Digests of HSP60 polypeptides by 20S proteasomes show most efficient generation of the pathology related CD8+ T cell epitope in the small intestine. Further, we demonstrate that the organ-specific potential to produce defined T cell epitopes reflects quantities that are relevant for cytotoxic T lymphocyte recognition. We propose tissue-specific antigen processing by 20S proteasomes as a potential mechanism to control organ-specific immune responses

    Critical Role of Methylglyoxal and AGE in Mycobacteria-Induced Macrophage Apoptosis and Activation

    Get PDF
    Apoptosis and activation of macrophages play an important role in the host response to mycobacterial infection involving TNF-α as a critical autocrine mediator. The underlying mechanisms are still ill-defined. Here, we demonstrate elevated levels of methylglyoxal (MG), a small and reactive molecule that is usually a physiological product of various metabolic pathways, and advanced glycation end products (AGE) during mycobacterial infection of macrophages, leading to apoptosis and activation of macrophages. Moreover, we demonstrate abundant AGE in pulmonary lesions of tuberculosis (TB) patients. Global gene expression profiling of MG-treated macrophages revealed a diverse spectrum of functions induced by MG, including apoptosis and immune response. Our results not only provide first evidence for the involvement of MG and AGE in TB, but also form a basis for novel intervention strategies against infectious diseases in which MG and AGE play critical roles
    • …
    corecore