881 research outputs found

    The Lopsidedness of Present-Day Galaxies: Results from the Sloan Digital Sky Survey

    Full text link
    Large-scale asymmetries in the stellar mass distribution in galaxies are believed to trace non-equilibrium situations in the luminous and/or dark matter component. These may arise in the aftermath of events like mergers, accretion, and tidal interactions. These events are key in the evolution of galaxies. In this paper we quantify the large-scale lopsidedness of light distributions in 25155 galaxies at z < 0.06 from the Sloan Digital Sky Survey Data Release 4 using the m = 1 azimuthal Fourier mode. We show that the lopsided distribution of light is primarily due to a corresponding lopsidedness in the stellar mass distribution. Observational effects, such as seeing, Poisson noise, and inclination, introduce only small errors in lopsidedness for the majority of this sample. We find that lopsidedness correlates strongly with other basic galaxy structural parameters: galaxies with low concentration, stellar mass, and stellar surface mass density tend to be lopsided, while galaxies with high concentration, mass, and density are not. We find that the strongest and most fundamental relationship between lopsidedness and the other structural parameters is with the surface mass density. We also find, in agreement with previous studies, that lopsidedness tends to increase with radius. Both these results may be understood as a consequence of several factors. The outer regions of galaxies and low-density galaxies are more susceptible to tidal perturbations, and they also have longer dynamical times (so lopsidedness will last longer). They are also more likely to be affected by any underlying asymmetries in the dark matter halo.Comment: 42 pages, 13 figures, 3 tables, accepted to Ap

    The Size and Shape of Voids in Three-Dimensional Galaxy Surveys

    Get PDF
    The sizes and shapes of voids in a galaxy survey depend not only on the physics of structure formation, but also on the sampling density of the survey and on the algorithm used to define voids. Using an N-body simulation with a CDM power spectrum, we study the properties of voids in samples with different number densities of galaxies, both in redshift space and in real space. When voids are defined as regions totally empty of galaxies, their characteristic volume is strongly dependent on sampling density; when they are defined as regions whose density is 0.2 times the mean galaxy density, the dependence is less strong. We compare two void-finding algorithms, one in which voids are nonoverlapping spheres, and one, based on the algorithm of Aikio and Mahonen, which does not predefine the shape of a void. Regardless of the algorithm chosen, the characteristic void size is larger in redshift space than in real space, and is larger for low sampling densities than for high sampling densities. We define an elongation statistic Q which measures the tendency of voids to be stretched or squashed along the line of sight. Using this statistic, we find that at sufficiently high sampling densities (comparable to the number densities of galaxies brighter than L_*), large voids tend to be slightly elongated along the line of sight in redshift space.Comment: LaTex, 21 pages (including 7 figures), ApJ, submitte

    Globular Cluster Systems and the Missing Satellite Problem: Implications for Cold Dark Matter Models

    Get PDF
    We analyze the metallicity distributions of globular clusters belonging to 28 early-type galaxies in the survey of Kundu & Whitmore (2001). A Monte Carlo algorithm which simulates the chemical evolution of galaxies that grow hierarchically via dissipationless mergers is used to determine the most probable protogalactic mass function for each galaxy. Contrary to the claims of Kundu & Whitmore, we find that the observed metallicity distributions are in close agreement with the predictions of such hierarchical formation models. The mass spectrum of protogalactic fragments for the galaxies in our sample has a power-law behavior, with an exponent of roughly -2. This spectrum is indistinguishable from the mass spectrum of dark matter halos predicted by cold dark matter models for structure formation. We argue that these protogalactic fragments, the likely sites of globular cluster formation in the early universe, are the disrupted remains of the "missing" satellite galaxies predicted by cold dark matter models. Our findings suggest that the solution to the missing satellite problem is through the suppression of gas accretion in low-mass halos after reionization, or via self-interacting dark matter, and argue against models with suppressed small-scale power or warm dark matter.Comment: 28 pages, 19 postscript figures. Accepted for publication in the Astrophysical Journa

    The Tidal Evolution of Local Group Dwarf Spheroidals

    Full text link
    (Abridged) We use N-body simulations to study the evolution of dwarf spheroidal galaxies (dSphs) driven by galactic tides. We adopt a cosmologically-motivated model where dSphs are approximated by a King model embedded within an NFW halo. We find that these NFW-embedded King models are extraordinarily resilient to tides; the stellar density profile still resembles a King model even after losing more than 99% of the stars. As tides strip the galaxy, the stellar luminosity, velocity dispersion, central surface brightness, and core radius decrease monotonically. Remarkably, we find that the evolution of these parameters is solely controlled by the total amount of mass lost from within the luminous radius. Of all parameters, the core radius is the least affected: after losing 99% of the stars, R_c decreases by just a factor of ~2. Interestingly, tides tend to make dSphs more dark-matter dominated because the tightly bound central dark matter ``cusp'' is more resilient to disruption than the ``cored'' King profile. We examine whether the extremely large M/L ratios of the newly-discovered ultra-faint dSphs might have been caused by tidal stripping of once brighter systems. Although dSph tidal evolutionary tracks parallel the observed scaling relations in the luminosity-radius plane, they predict too steep a change in velocity dispersion compared with the observational estimates hitherto reported in the literature. The ultra-faint dwarfs are thus unlikely to be the tidal remnants of systems like Fornax, Draco, or Sagittarius. Despite spanning four decades in luminosity, dSphs appear to inhabit halos of comparable peak circular velocity, lending support to scenarios that envision dwarf spheroidals as able to form only in halos above a certain mass threshold.Comment: 17 pages, 12 figs., accepted by Ap

    Stellar and Gas properties of High HI Mass-to-Light Ratio Galaxies in the Local Universe

    Full text link
    We present a multi-wavelength study (BVRI band photometry and HI line interferometry) of nine late-type galaxies selected from the HIPASS Bright Galaxy Catalog on the basis of apparently high HI mass-to-light ratios (3 M_sun/L_sun < M_HI/L_B < 27 M_sun/L_sun). We found that most of the original estimates for M_HI/L_B based on available photographic magnitudes in the literature were too high, and conclude that genuine high HI mass-to-light ratio (>5 M_sun/L_sun) galaxies are rare in the Local Universe. Extreme high M_HI/L_B galaxies like ESO215-G?009 appear to have formed only the minimum number of stars necessary to maintain the stability of their HI disks, and could possibly be used to constrain galaxy formation models. They may to have been forming stars at a low, constant rate over their lifetimes. The best examples all have highly extended HI disks, are spatially isolated, and have normal baryonic content for their total masses but are deficent in stars. This suggests that high M_HI/L_B galaxies are not lacking the baryons to create stars, but are underluminous as they lack either the internal or external stimulation for more extensive star formation.Comment: 29 Pages, 59 Figures. Accepted for publication in AJ (to be published ~April 2006

    Galaxy evolution within the Kilo-Degree Survey

    Get PDF
    The ESO Public Kilo-Degree Survey (KiDS) is an optical wide-field imaging survey carried out with the VLT Survey Telescope and the OmegaCAM camera. KiDS will scan 1500 square degrees in four optical filters (u, g, r, i). Designed to be a weak lensing survey, it is ideal for galaxy evolution studies, thanks to the high spatial resolution of VST, the good seeing and the photometric depth. The surface photometry have provided with structural parameters (e.g. size and S\'ersic index), aperture and total magnitudes have been used to derive photometric redshifts from Machine learning methods and stellar masses/luminositites from stellar population synthesis. Our project aimed at investigating the evolution of the colour and structural properties of galaxies with mass and environment up to redshift z0.5z \sim 0.5 and more, to put constraints on galaxy evolution processes, as galaxy mergers.Comment: 4 pages, 2 figures, to appear on the refereed Proceeding of the "The Universe of Digital Sky Surveys" conference held at the INAF--OAC, Naples, on 25th-28th november 2014, to be published on Astrophysics and Space Science Proceedings, edited by Longo, Napolitano, Marconi, Paolillo, Iodic

    Origin and evolution of halo bias in linear and non-linear regimes

    Full text link
    We present results from a study of bias and its evolution for galaxy-size halos in a large, high-resolution simulation of a LCDM model. We consider the evolution of bias estimated using two-point correlation function (b_xi), power spectrum (b_P), and a direct correlation of smoothed halo and matter overdensity fields (b_d). We present accurate estimates of the evolution of the matter power spectrum probed deep into the stable clustering regime (k~[0.1-200]h/Mpc at z=0). The halo power spectrum evolves much slower than the power spectrum of matter and has a different shape which indicates that the bias is time- and scale-dependent. At z=0, the halo power spectrum is anti-biased with respect to the matter power spectrum at wavenumbers k~[0.15-30]h/Mpc, and provides an excellent match to the power spectrum of the APM galaxies at all probed k. In particular, it nicely matches the inflection observed in the APM power spectrum at k~0.15h/Mpc. We complement the power spectrum analysis with a direct estimate of bias using smoothed halo and matter overdensity fields and show that the evolution observed in the simulation in linear and mildly non-linear regimes can be well described by the analytical model of Mo & White (1996), if the distinction between formation redshift of halos and observation epoch is introduced into the model. We present arguments and evidence that at higher overdensities, the evolution of bias is significantly affected by dynamical friction and tidal stripping operating on the satellite halos in high-density regions of clusters and groups; we attribute the strong anti-bias observed in the halo correlation function and power spectrum to these effects. (Abridged)Comment: submitted to the Astrophys.Journal; 19 pages, 9 figures LaTeX (uses emulateapj.sty

    The Evolution of the ISM in the Mildly Disturbed Spiral Galaxy NGC 4647

    Get PDF
    We present matched-resolution maps of HI and CO emission in the Virgo Cluster spiral NGC 4647. The galaxy shows a mild kinematic disturbance in which one side of the rotation curve flattens but the other side continues to rise. This kinematic asymmetry is coupled with a dramatic asymmetry in the molecular gas distribution but not in the atomic gas. An analysis of the gas column densities and the interstellar pressure suggests that the H2/HI surface density ratio on the east side of the galaxy is three times higher than expected from the hydrostatic pressure contributed by the mass of the stellar disk. We discuss the probable effects of ram pressure, gravitational interactions, and asymmetric potentials on the interstellar medium and suggest it is likely that a m=1 perturbation in the gravitational potential could be responsible for all of the galaxy's features. Kinematic disturbances of the type seen here are common, but the curious thing about NGC 4647 is that the molecular distribution appears more disturbed than the HI distribution. Thus it is the combination of the two gas phases that provides such interesting insight into the galaxy's history and into models of the interstellar medium.Comment: ApJ, accepte

    Evidence for Evolving Spheroidals in the Hubble Deep Fields North and South

    Full text link
    We investigate the dispersion in the internal colours of faint spheroidals in the HDFs North and South. We find that a remarkably large fraction ~30% of the morphologically classified spheroidals with I<24 mag show strong variations in internal colour, which we take as evidence for recent episodes of star-formation. In most cases these colour variations manifest themselves via the presence of blue cores, an effect of opposite sign to that expected from metallicity gradients. Examining similarly-selected ellipticals in five rich clusters with 0.37<z<0.83 we find a significant lower dispersion in their internal colours. This suggests that the colour inhomogeneities have a strong environmental dependence being weakest in dense environments where spheroidal formation was presumably accelerated at early times. We use the trends defined by the cluster sample to define an empirical model based on a high-redshift of formation and estimate that at z~1 about half the field spheroidals must be undergoing recent episodes of star-formation. Using spectral synthesis models, we construct the time dependence of the density of star-formation. Although the samples are currently small, we find evidence for an increase in ρSFR\rho_{SFR} between z=0 to z=1. We discuss the implications of this rise in the context of that observed in the similar rise in the abundance of galaxies with irregular morphology. Regardless of whether there is a connection our results provide strong evidence for the continued formation of field spheroidals over 0<z<1.Comment: 13 pages, 11 figures. To appear in MNRAS in response to referee's Report. Figures and paper also available at http://www.ast.cam.ac.uk/~fmenante/HDFs

    Constraining the Lifetime of Quasars from their Spatial Clustering

    Full text link
    The lifetime t_Q of the luminous phase of quasars is constrained by current observations to be between 10^6 and 10^8 years, but is otherwise unkown. We model the quasar luminosity function in detail in the optical and X-ray bands using the Press-Schechter formalism, and show that the expected clustering of quasars depends strongly on their assumed lifetime. We quantify this dependence, and find that existing measurements of the correlation length of quasars are consistent with the range 10^6 < t_Q < 10^8 years. We then show that future measurements of the power spectrum of quasars out to z=3, from the 2dF or Sloan Digital Sky Survey, can significantly improve this constraint, and in principle allow a precise determination of t_Q. We estimate the systematic errors introduced by uncertainties in the modeling of the quasar-halo relationship, as well as by the possible existence of obscured quasars.Comment: ApJ, in press (emulateapj
    corecore