2,869 research outputs found
Limits on the evolution of galaxies from the statistics of gravitational lenses
We use gravitational lenses from the Cosmic Lens All-Sky Survey (CLASS) to
constrain the evolution of galaxies since redshift in the current
\LCDM cosmology. This constraint is unique as it is based on a mass-selected
lens sample of galaxies. Our method of statistical analysis is the same as in
Chae (2003). We parametrise the early-type number density evolution in the form
of and the velocity dispersion as . We find that
() if we assume , implying
that the number density of early-type galaxies is within 50% to 164% of the
present-day value at redshift . Allowing the velocity dispersion to
evolve, we find that (), indicating that
the velocity dispersion must be within 57% and 107% of the present-day value at
. These results are consistent with the early formation and passive
evolution of early-type galaxies. More stringent limits from lensing can be
obtained from future large lens surveys and by using very high-redshift quasars
(z \ga 5) such as those found from the Sloan Digital Sky Survey.Comment: 10 pages (preprint format), 2 figures, ApJL in press (December 20th
issue
A Unified Model for the Evolution of Galaxies and Quasars
We incorporate a simple scheme for the growth of supermassive black holes
into semi-analytic models that follow the formation and evolution of galaxies
in a cold dark matter dominated Universe. We assume that supermassive black
holes are formed and fuelled during major mergers. If two galaxies of
comparable mass merge, their central black holes coalesce and a few percent of
the gas in the merger remnant is accreted by the new black hole over a
timescale of a few times 10^7 years. With these simple assumptions, our model
not only fits many aspects of the observed evolution of galaxies, but also
reproduces quantitatively the observed relation between bulge luminosity and
black hole mass in nearby galaxies, the strong evolution of the quasar
population with redshift and the relation between the luminosities of nearby
quasars and those of their host galaxies. The strong decline in the number
density of quasars from z=2 to z=0 is due to the combination of three effects:
i) a decrease in the merging rate, ii) a decrease in the amount of cold gas
available to fuel black holes, and iii) an increase in the timescale for gas
accretion. In a LCDM cosmology the predicted decline in the total content of
cold gas in galaxies is consistent with that inferred from observations of
damped Lyman-alpha systems. Our results strongly suggest that the evolution of
supermassive black holes, quasars and starbursts is inextricably linked to the
hierarchical build-up of galaxies.Comment: 30 pages, Latex, 18 figures included, submitted to MNRA
The Ages of Elliptical Galaxies in a Merger Model
The tightness of the observed colour-magnitude and Mg- velocity
dispersion relations for elliptical galaxies has often been cited as an
argument against a picture in which ellipticals form by the merging of spiral
disks. A common view is that merging would mix together stars of disparate ages
and produce a large scatter in these relations. Here I use semi-analytic models
of galaxy formation to derive the distribution of the mean ages, colours and
metallicities of the stars in elliptical galaxies formed by mergers in a flat
CDM universe. It is seen that most of the stars in ellipticals form at
relatively high redshift (z > 1.9) and that the predicted scatter in the
colour-magnitude and Mg_2 - sigma relations falls within observational bounds.
I conclude that the apparent homogeneity in the properties of the stellar
populations of ellipticals is not inconsistent with a merger scenario for the
origin of these systems.Comment: latex file, figures available upon reques
The Relationship of Hard X-ray and Optical Line Emission in Low Redshift Active Galactic Nuclei
In this paper we assess the relationship of the population of Active Galactic
Nuclei (AGN) selected by hard X-rays to the traditional population of AGN with
strong optical emission lines. First, we study the emission-line properties of
a new hard X-ray selected sample of 47 local AGN (classified optically as both
Type 1 and Type 2 AGN). We find that the hard X- ray (3-20 keV) and
[OIII]5007 optical emission-line luminosities are well-correlated over
a range of about four orders-of-magnitude in luminosity (mean luminosity ratio
2.15 dex with a standard deviation of = 0.51 dex). Second, we study
the hard X-ray properties of a sample of 55 local AGN selected from the
literature on the basis of the flux in the [OIII] line. The correlation between
the hard X-ray (2-10 keV) and [OIII] luminosity for the Type 1 AGN is
consistent with what is seen in the hard X-ray selected sample. However, the
Type 2 AGN have a much larger range in the luminosity ratio, and many are very
weak in hard X-rays (as expected for heavily absorbed AGN). We then compare the
hard X-ray (3-20 keV) and [OIII] luminosity functions of AGN in the local
universe. These have similar faint-end slopes with a luminosity ratio of 1.60
dex (0.55 dex smaller than the mean value for individual hard X-ray selected
AGN). We conclude that at low redshift, selection by narrow optical emission-
lines will recover most AGN selected by hard X-rays (with the exception of BL
Lac objects). However, selection by hard X-rays misses a significant fraction
of the local AGN population with strong emission lines
The scale-dependence of relative galaxy bias: encouragement for the halo model description
We investigate the relationship between the colors, luminosities, and
environments of galaxies in the Sloan Digital Sky Survey spectroscopic sample,
using environmental measurements on scales ranging from 0.2 to 6 Mpc/h. We
find: (1) that the relationship between color and environment persists even to
the lowest luminosities we probe (absolute magnitude in the r band of about -14
for h=1); (2) at luminosities and colors for which the galaxy correlation
function has a large amplitude, it also has a steep slope; and (3) in regions
of a given overdensity on small scales (1 Mpc/h), the overdensity on large
scales (6 Mpc/h) does not appear to relate to the recent star formation history
of the galaxies. Of these results, the last has the most immediate application
to galaxy formation theory. In particular, it lends support to the notion that
a galaxy's properties are related only to the mass of its host dark matter
halo, and not to the larger scale environment.Comment: submitted to ApJ; full resolution figures and slide material
available at http://cosmo.nyu.edu/blanton/scale_density.htm
Ten Billion Years of Galaxy Evolution
Observations in the Hubble Deep Fields have been used to study the evolution
of galaxy morphology over time. The majority of galaxies with z < 1 are seen to
be disk like, whereas most objects with z > 2 appear to be either chaotic or
centrally concentrated ``blobs''. Such blobs might be the ancestral objects of
ellipticals or of galaxy bulges. About 1/3 of objects with z > 2 appear to be
in the process of merging. The region with 1 < z < 2 marks an important
transition in the global history of star formation from a merger dominated
regime at z > 2, to one at z < 1 in which most star formation takes place in
galactic disks. It is speculated that the break in the Madau plot at z sim 1.5
might be related to the transition from merger-dominated star formation at z >
2 to disk-dominated star formation at at z < 1.Comment: 19 pages. 1 figure. To be published in the August 2002 issue of PAS
HI and Star Formation Properties of Massive Galaxies: First Results from the GALEX Arecibo SDSS Survey
The GALEX Arecibo SDSS Survey (GASS) is an ambitious program designed to
investigate the cold gas properties of massive galaxies, a challenging
population for HI studies. Using the Arecibo radio telescope, GASS is gathering
high-quality HI-line spectra for an unbiased sample of ~1000 galaxies with
stellar masses greater than 10^10 Msun and redshifts 0.025 < z < 0.05,
uniformly selected from the SDSS spectroscopic and GALEX imaging surveys. The
galaxies are observed until detected or until a low gas mass fraction limit
(1.5-5%) is reached. We present initial results based on the first Data
Release, which consists of ~20% of the final GASS sample. We use this data set
to explore the main scaling relations of HI gas fraction with galaxy structure
and NUV-r colour, and show our best fit plane describing the relation between
gas fraction, stellar mass surface density and NUV-r colour. Interesting
outliers from this plane include gas-rich red sequence galaxies that may be in
the process of regrowing their disks, as well as blue, but gas-poor spirals.Comment: 4 pages, 2 figures. To appear in "Hunting for the Dark: The Hidden
Side of Galaxy Formation", Malta, 19-23 Oct. 2009, eds. V.P. Debattista &
C.C. Popescu, AIP Conf. Se
Infalling Faint [OII] Emitters in Abell 851. I. Spectroscopic Confirmation of Narrowband-Selected Objects
We report on a spectroscopic confirmation of narrowband-selected [OII]
emitters in Abell 851 catalogued by Martin et al. (2000). The optical spectra
obtained from the Keck I Low Resolution Imaging Spectrometer (LRIS) and Keck II
Deep Imaging Multi-Object Spectrograph (DEIMOS) have confirmed [OII]3727
emission in narrowband-selected cluster [OII] candidates at a 85% success rate
for faint (i <~ 25) blue (g-i < 1) galaxies. The rate for the successful
detection of [OII] emission is a strong function of galaxy color, generally
proving the efficacy of narrowband [OII] search supplemented with broadband
colors in selecting faint cluster galaxies with recent star formation. Balmer
decrement-derived reddening measurements show a high degree of reddening
[E(B-V) >~ 0.5] in a significant fraction of this population. Even after
correcting for dust extinction, the [OII]/Ha line flux ratio for the
high-E(B-V) galaxies remains generally lower by a factor of ~2 than the mean
[OII]/Ha ratios reported by the studies of nearby galaxies. The strength of
[OII] equivalent width shows a negative trend with galaxy luminosity while the
Ha equivalent width does not appear to depend as strongly on luminosity. This
in part is due to the high amount of reddening observed in luminous galaxies.
Furthermore, emission line ratio diagnostics show that AGN-like galaxies are
abundant in the high luminosity end of the cluster [OII]-emitting sample, with
only moderately strong [OII] equivalent widths, consistent with a scenario of
galaxy evolution connecting AGNs and suppression of star-forming activity in
massive galaxies.Comment: 11 pages (LaTeX emulateapj), 8 figures, to appear in ApJ. A version
with high resolution figures available from the lead autho
The Massive End of the Stellar Mass Function
We derive average flux corrections to the \texttt{Model} magnitudes of the
Sloan Digital Sky Survey (SDSS) galaxies by stacking together mosaics of
similar galaxies in bins of stellar mass and concentration. Extra flux is
detected in the outer low surface brightness part of the galaxies, leading to
corrections ranging from 0.05 to 0.32 mag for the highest stellar mass
galaxies. We apply these corrections to the MPA-JHU (Max-Planck Institute for
Astrophysics - John Hopkins University) stellar masses for a complete sample of
half a million galaxies from the SDSS survey to derive a corrected galaxy
stellar mass function at in the stellar mass range
. We find that the flux corrections and the use
of the MPA-JHU stellar masses have a significant impact on the massive end of
the stellar mass function, making the slope significantly shallower than that
estimated by Li \& White (2009), but steeper than derived by Bernardi et al.
(2013). This corresponds to a mean comoving stellar mass density of galaxies
with stellar masses that is a factor of 3.36
larger than the estimate by Li \& White (2009), but is 43\% smaller than
reported by Bernardi et al. (2013).Comment: 11 pages, 8 figures, Accepted to MNRA
Ionized Gas in Damped Lyman Alpha Protogalaxies: II. Comparison Between Models and the Kinematic Data
We test semi-analytic models for galaxy formation with accurate kinematic
data of damped Lyman alpha protogalaxies (DLAs) presented in the companion
paper I. The models envisage centrifugally supported exponential disks at the
centers of dark matter halos which are filled with ionized gas undergoing
radial infall to the disks. The halo masses are drawn from cross-section
weighted mass distributions predicted by CDM cosmogonies, or by the null
hypothesis (TF model) that the dark matter mass distribution has not evolved
since z ~ 3. In our models, C IV absorption lines detected in DLAs arise in
infalling ionized clouds while the low-ion absorption lines arise from neutral
gas in the disks. Using Monte Carlo methods we find: (a) The CDM models are
incompatible with the low-ion statistics at more than 99% confidence whereas
some TF models cannot be excluded at more than 88% confidence. (b) Both CDM and
TF models agree with the observed distribution of C IV velocity widths. (c) The
CDM models generate differences between the mean velocities of C IV and low ion
profiles in agreement with the data, while the TF model produces differences in
the means that are too large. (d) Both CDM and TF models produce ratios of C IV
to low-ion velocity widths that are too large. (e) Both CDM and TF models
generate C IV versus low-ion cross-correlation functions incompatible with the
data.
While it is possible to select model parameters resulting in consistency with
the data, the disk-halo configuration assumed in both cosmogonies still does
not produce significant overlap in velocity space between C IV low-ion velocity
profiles. We conjecture that including angular momentum of the infalling clouds
will increase the overlap between C IV and low-ion profiles.Comment: 18 pages, 12 Figures, Accepted for publication in the Dec. 20 issue
of the Astrophysical Journa
- …