4,299 research outputs found

    The Number of Different Binary Functions Generated by NK-Kauffman Networks and the Emergence of Genetic Robustness

    Full text link
    We determine the average number ϑ(N,K) \vartheta (N, K) , of \textit{NK}-Kauffman networks that give rise to the same binary function. We show that, for N1 N \gg 1 , there exists a connectivity critical value Kc K_c such that ϑ(N,K)eϕN \vartheta(N,K) \approx e^{\phi N} (ϕ>0 \phi > 0 ) for K<Kc K < K_c and ϑ(N,K)1\vartheta(N,K) \approx 1 for K>Kc K > K_c . We find that Kc K_c is not a constant, but scales very slowly with N N , as Kclog2log2(2N/ln2) K_c \approx \log_2 \log_2 (2N / \ln 2) . The problem of genetic robustness emerges as a statistical property of the ensemble of \textit{NK}-Kauffman networks and impose tight constraints in the average number of epistatic interactions that the genotype-phenotype map can have.Comment: 4 figures 18 page

    Self-Reduction Rate of a Microtubule

    Full text link
    We formulate and study a quantum field theory of a microtubule, a basic element of living cells. Following the quantum theory of consciousness by Hameroff and Penrose, we let the system to reduce to one of the classical states without measurement if certain conditions are satisfied(self-reductions), and calculate the self-reduction time τN\tau_N (the mean interval between two successive self-reductions) of a cluster consisting of more than NN neighboring tubulins (basic units composing a microtubule). τN\tau_N is interpreted there as an instance of the stream of consciousness. We analyze the dependence of τN\tau_N upon NN and the initial conditions, etc. For relatively large electron hopping amplitude, τN\tau_N obeys a power law τNNb\tau_N \sim N^b, which can be explained by the percolation theory. For sufficiently small values of the electron hopping amplitude, τN\tau_N obeys an exponential law, τNexp(cN)\tau_N \sim \exp(c' N). By using this law, we estimate the condition for τN\tau_N to take realistic values τN\tau_N \raisebox{-0.5ex}{>\stackrel{>}{\sim}} 10110^{-1} sec as NN \raisebox{-0.5ex} {>\stackrel{>}{\sim}} 1000.Comment: 7 pages, 9 figures, Extended versio

    On the Quantum Computational Complexity of the Ising Spin Glass Partition Function and of Knot Invariants

    Full text link
    It is shown that the canonical problem of classical statistical thermodynamics, the computation of the partition function, is in the case of +/-J Ising spin glasses a particular instance of certain simple sums known as quadratically signed weight enumerators (QWGTs). On the other hand it is known that quantum computing is polynomially equivalent to classical probabilistic computing with an oracle for estimating QWGTs. This suggests a connection between the partition function estimation problem for spin glasses and quantum computation. This connection extends to knots and graph theory via the equivalence of the Kauffman polynomial and the partition function for the Potts model.Comment: 8 pages, incl. 2 figures. v2: Substantially rewritte

    The Asymptotic Number of Attractors in the Random Map Model

    Get PDF
    The random map model is a deterministic dynamical system in a finite phase space with n points. The map that establishes the dynamics of the system is constructed by randomly choosing, for every point, another one as being its image. We derive here explicit formulas for the statistical distribution of the number of attractors in the system. As in related results, the number of operations involved by our formulas increases exponentially with n; therefore, they are not directly applicable to study the behavior of systems where n is large. However, our formulas lend themselves to derive useful asymptotic expressions, as we show.Comment: 16 pages, 1 figure. Minor changes. To be published in Journal of Physics A: Mathematical and Genera

    Quantum logic as superbraids of entangled qubit world lines

    Full text link
    Presented is a topological representation of quantum logic that views entangled qubit spacetime histories (or qubit world lines) as a generalized braid, referred to as a superbraid. The crossing of world lines is purely quantum in nature, most conveniently expressed analytically with ladder-operator-based quantum gates. At a crossing, independent world lines can become entangled. Complicated superbraids are systematically reduced by recursively applying novel quantum skein relations. If the superbraid is closed (e.g. representing quantum circuits with closed-loop feedback, quantum lattice gas algorithms, loop or vacuum diagrams in quantum field theory), then one can decompose the resulting superlink into an entangled superposition of classical links. In turn, for each member link, one can compute a link invariant, e.g. the Jones polynomial. Thus, a superlink possesses a unique link invariant expressed as an entangled superposition of classical link invariants.Comment: 4 page

    Canonical quantization of general relativity in discrete space-times

    Get PDF
    It has long been recognized that lattice gauge theory formulations, when applied to general relativity, conflict with the invariance of the theory under diffeomorphisms. Additionally, the traditional lattice field theory approach consists in fixing the gauge in a Euclidean action, which does not appear appropriate for general relativity. We analyze discrete lattice general relativity and develop a canonical formalism that allows to treat constrained theories in Lorentzian signature space-times. The presence of the lattice introduces a ``dynamical gauge'' fixing that makes the quantization of the theories conceptually clear, albeit computationally involved. Among other issues the problem of a consistent algebra of constraints is automatically solved in our approach. The approach works successfully in other field theories as well, including topological theories like BF theory. We discuss a simple cosmological application that exhibits the quantum elimination of the singularity at the big bang.Comment: 4 pages, RevTeX, no figures, final version to appear in Physical Review Letter

    Self-organized Networks of Competing Boolean Agents

    Full text link
    A model of Boolean agents competing in a market is presented where each agent bases his action on information obtained from a small group of other agents. The agents play a competitive game that rewards those in the minority. After a long time interval, the poorest player's strategy is changed randomly, and the process is repeated. Eventually the network evolves to a stationary but intermittent state where random mutation of the worst strategy can change the behavior of the entire network, often causing a switch in the dynamics between attractors of vastly different lengths.Comment: 4 pages, 3 included figures. Some text revision and one new figure added. To appear in PR

    Distinguishing scalar from pseudoscalar Higgs production at the LHC

    Full text link
    In this letter we examine the production channels for the scalar or pseudoscalar Higgs plus two jets at the CERN Large Hadron Collider (LHC). We identify possible signals for distinguishing between a scalar and a pseudoscalar Higgs boson.Comment: 7 pages, REVTeX4, 4 eps figures. Figure 1 and 4 replaced. Typos corrected, additional reference adde

    Lens Spaces and Handlebodies in 3D Quantum Gravity

    Get PDF
    We calculate partition functions for lens spaces L_{p,q} up to p=8 and for genus 1 and 2 handlebodies H_1, H_2 in the Turaev-Viro framework. These can be interpreted as transition amplitudes in 3D quantum gravity. In the case of lens spaces L_{p,q} these are vacuum-to-vacuum amplitudes \O -> \O, whereas for the 1- and 2-handlebodies H_1, H_2 they represent genuinely topological transition amplitudes \O -> T^2 and \O -> T^2 # T^2, respectively.Comment: 14 pages, LaTeX, 5 figures, uses eps

    Critical Networks Exhibit Maximal Information Diversity in Structure-Dynamics Relationships

    Full text link
    Network structure strongly constrains the range of dynamic behaviors available to a complex system. These system dynamics can be classified based on their response to perturbations over time into two distinct regimes, ordered or chaotic, separated by a critical phase transition. Numerous studies have shown that the most complex dynamics arise near the critical regime. Here we use an information theoretic approach to study structure-dynamics relationships within a unified framework and how that these relationships are most diverse in the critical regime
    corecore