3,680 research outputs found
Mediator combined gaseous substrate for electricity generation in microbial fuel cells (MFCs) and potential integration of a MFC into an anaerobic biofiltration system.
Microbial fuel cells (MFCs) are emerging energy production technology which converts the chemical energy stored in biologically degradable compounds to electricity at high
efficiencies. Microbial fuel cells have some advantages such as use of an inexpensive catalyst, operate under mild reaction conditions (i.e. ambient temperature, normal pressure
and neutral pH), and generate power from a wide range and cheap raw materials. These make microbial fuel cell as an attractive alternative over other electricity generating
devices. However, so far the major problem posses by this technology is the low power outputs of the microbial fuel cells that hinder its commercialization. Restriction in the
electron transfer from bacteria to the anode electrode of a MFC is thought to be one cause for the low power output.
Most recent MFC research is focused on using contaminants present in industrial, agricultural, and municipal wastewater as the energy source, with very few studies utilising gaseous substrates. Mediators can be added to MFCs to enhance the electron transfer from the microbe to the anode, but have limited practical applicability in wastewater applications because of the difficulty in recovering the expensive and potentially toxic compound. This thesis describes an investigation of electricity generation in a microbial fuel cell by combining a gaseous substrate with a mediator in the anode compartment. The emphasis being placed on the selection of a mediator to improve the electron transfer process for electricity production in an MFC. Subsequently, methods to improve the performance of a mediator MFC in respect of power and current density were discussed. This type of MFC is purposely aimed to be applied for treating gaseous contaminants in an anaerobic biofilter while simultaneously produce electricity.
In this study, ethanol was the first gaseous substrate tested for the possibility to generate electricity in the MFC. Various mediators were previously compared in their reversibility
of redox reactions and in the current production, and three best mediators were then
selected for the power production. The highest electrical current production i.e. 12 μA/cm2 was obtained and sustained for 24 hrs with N,N,N',N'-tetramethyl-1,4-
phenylendiamine TMPD (N-TMPD) as the mediator using glassy carbon (GC) electrode. The maximum power density reached 0.16 mW/cm2 by using carbon cloth (CC) anode.
The absorption of these mediators by the bacterial cells was shown to correlate with the obtained energy production, with no N-TMPD was absorbed by the bacterial cells. The 24 hr current production was shown to be accompanied by the decrease in the ethanol concentration (i.e. 1.82 g/L), however ethanol crossover through the proton exchange
membrane and ethanol evaporation around the electrodes were most likely to be the major cause of the decrease in the ethanol concentration. A theoretical coulombic efficiency of
0.005% was calculated for this system.
The electrokinetics of microbial reduced mediator in the ethanol-mediator MFCs was also examined. Two methods i.e. linear sweep voltammetry (LSV) and cyclic voltammetry (CV) were used to obtained the kinetic parameters. CV method gave a better estimation of
the kinetic parameters than LSV method due to the low concentration of the mediators used, affecting the Tafel behaviors. All CVs showed quasi-reversible behaviors compared
to the CVs in the absence of the bacteria, which is thought due to the bacteria decreased the amount of the reduced and the oxidised mediator available at the surface of GC
electrode. The highest exchange current density (i o ) was obtained by using N-TMPD as the mediator with the same concentration of the mediator used i.e. 0.13±0.01 mA/cm
2. The power output achieved also the highest (0.008 mW/cm
2) with N-TMPD as the mediator. The power density was improved to 0.03 mW/cm2 by using CC electrode.
Another main objective of this thesis is to prove anoxic methane oxidation which was believed to occur only in marine sediments, and applies this for power generation in microbial fuel cells. Ferricyanide looked promising when it was used as the electron acceptor (thus as the mediator for the MFC). It was shown that ferricyanide was fully reduced by methanotrophs bacteria with methane as the substrate (versus abiotic and
nitrogen control). The highest reduction rate achieved was 3 x10-3 mM/min.g. This finding was supported by ferricyanide peak heights disappearance (spectrophotometry at 420 nm),
CO 2 production (sensor readings), ferrocyanide formation (cyclic voltammetry), and no other alternate electron acceptor was present. The total CO 2 produced was equal to 0.015 mmoles of CO 2 from starting concentration ferricyanide of 0.2 mmoles (after substraction with an offset value). CV results show 2.4 mM of ferrocyanide was produced after a total addition of 3 mM ferricyanide into the anoxic methanotrophic suspension. The current and voltage generation in microbial fuel cell reactor from the reduced ferricyanide confirmed that ferricyanide received electrons from the bacterial metabolism. The maximum power
density of 0.02 mW/cm2 and OCV of 0.6 V were obtained with 3 mM ferricyanide using LSV method
The synthesis of macromolecules in the left colleterial gland of Periplaneta americana during the reproductive cycle.
The synthesis of proteins and RNA in the left colleterial gland (LCG) of P. americana during the reproductive cycle are cyclic, highly dynamic processes. The patterns of protein synthesis and accumulation in the gland fluctuate very rapidly throughout the reproductive cycle.
Three major peaks in levels of protein synthesis are detected during the cycle. Two of these, occurring in close succession, take place before the onset of ootheca synthesis, whereas the last peak occurs shortly before ootheca deposition and extends into the early phases of the new cycle. The patterns of translational activity and protein accumulation in the gland suggest that the LCG could be involved in the production of proteins for export as well as for ootheca synthesis.
The pattern of total RNA synthesis in the LCG closely follows that of protein synthesis during the reproductive cycle. Three major peaks in total RNA synthesis are observed, each of which occurs eight hours before a peak in protein synthesis and corresponds to enhanced production of poly(A)-RNA. The major increases in poly(A)+ RNA synthesis in the LCG correlate precisely with the peaks in protein synthesis.
The LCG is known to be functionally dependent upon juvenile hormone (JH). However, the transcriptional and translational responses of the gland to the presence of the hormone in vitro are not stereotyped but highly stage-specific. Short term in vitro JH III treatment primarily affects RNA synthesis in the LCG, but the transcriptional response of the gland to the presence of the hormone may be positive (RNA synthesis stimulated), negative (inhibition of RNA synthesis) or null, depending on the stage of the cycle.
The stages of high transcriptional activity observed in the LCG during the reproductive cycle correlate precisely with the stages at which in vitro JH III treatment elicits a large positive response from the isolated gland.
The immediate translational response of the gland to the presence of JH III in vitro is generally negative, except at the stages of high endogenous translational activity.
However, it is not entirely clear whether or not JH III is solely responsible for the initial appearance of the endogenous increases in RNA and protein synthesis observed in the LCG during the reproductive cycle. It is apparent that JH III is not the only regulatory factor controlling LCG activities during the reproductive cycle.
A major regulatory system controlling the secretory and possibly transcriptional activities of the LCG during the reproductive cycle has been uncovered.
In vitro ecdysterone treatment, of glands isolated at stages far removed from ovulation and the onset of ootheca synthesis, depresses transcriptional activity in the LCG and induces the gland to spontaneously release its luminal content. The inhibitory effects of ecdysterone upon in vitro RNA synthesis are only slightly alleviated by JH III when both hormones are present in equal amounts while ecdysone-induced secretory activity is inhibited.
The presence of ovarioles isolated at 64h (onset of in vivo LCG secretory activity) in the incubation medium gives rise to a very strong inhibition of RNA synthesis in the LCG while concurrently inducing
secretory activity is inhibited
Ratios of charged antiparticles to particles near mid-rapidity in Au+Au collisions at sqrt(s_NN) = 130 GeV
We have measured the ratios of antiparticles to particles for charged pions,
kaons and protons near mid-rapidity in central Au+Au collisions at sqrt(s_NN) =
130 GeV. For protons, we observe pbar/p = 0.60 +/- 0.04 (stat.) +/- 0.06
(syst.) in the transverse momentum range 0.15 < p_T < 1.0 GeV/c. This leads to
an estimate of the baryo-chemical potential mu_B of 45 MeV, a factor of 5-6
smaller than in central Pb+Pb collisions at sqrt(s_NN) = 17.2 GeV.Comment: 4 page
Elliptic Flow in Au+Au Collisions at RHIC
Elliptic flow is an interesting probe of the dynamical evolution of the dense
system formed in the ultrarelativistic heavy ion collisions at the Relativistic
Heavy Ion Collider (RHIC). The elliptic flow dependences on transverse
momentum, centrality, and pseudorapidity were measured using data collected by
the PHOBOS detector, which offers a unique opportunity to study the azimuthal
anisotropies of charged particles over a wide range of pseudorapidity. These
measurements are presented, together with an overview of the analysis methods
and a discussion of the results.Comment: Presented at Hot Quarks 2004; 7 pages, 6 figure
The Landscape of Particle Production: Results from PHOBOS
Recent results from the PHOBOS experiment at RHIC are presented, both from
Au+Au collisions from the 2001 run and p+p and d+Au collisions from 2003. The
centrality dependence of the total charged particle multiplicity in p+p and
d+Au show features, such as Npart-scaling and limiting fragmentation, similar
to p+A collisions at lower energies. Multiparticle physics in Au+Au is found to
be local in (pseudo)rapidity, both when observed by HBT correlations and by
forward-backward pseudorapidity correlations. The shape of elliptic flow in
Au+Au, measured over the full range of pseudorapidity, appears to have a very
weak centrality dependence. Identified particle ratios in d+Au reactions show
little difference between the shape of proton and anti-proton spectra, while
the absolute yields show an approximate m_T scaling.Comment: 8 Pages, 11 Figures, Plenary talk at Quark Matter 2004, Oakland, CA,
January 11-18, 200
Pseudorapidity and centrality dependence of the collective flow of charged particles in Au+Au collisions at sqrt{s_NN} = 130 GeV
This paper describes the measurement of collective flow for charged particles
in Au+Au collisions at sqrt{s_NN}} = 130 GeV using the PHOBOS detector at the
Relativistic Heavy Ion Collider (RHIC). An azimuthal anisotropy is observed in
the charged particle hit distribution in the PHOBOS multiplicity detector. This
anisotropy is presented over a wide range of pseudorapidity (eta) for the first
time at this energy. The size of the anisotropy (v_{2}) is thought to probe the
degree of equilibration achieved in these collisions. The result here,averaged
over momenta and particle species, is observed to reach 7% for peripheral
collisions at mid-rapidity, falling off with centrality and increasing |eta|.
Data are presented as a function of centrality for |eta|<1.0 and as a function
of eta, averaged over centrality, in the angular region -5.0<eta<5.3. These
results call into question the common assumption of longitudinal boost
invariance over a large region of rapidity in RHIC collisions.Comment: 5 pages, 4 figures, submitted to Physical Review Letter
Collision geometry scaling of Au+Au pseudorapidity density from sqrt(s_NN) = 19.6 to 200 GeV
The centrality dependence of the midrapidity charged particle multiplicity in
Au+Au collisions at sqrt(s_NN) = 19.6 and 200 GeV is presented. Within a simple
model, the fraction of hard (scaling with number of binary collisions) to soft
(scaling with number of participant pairs) interactions is consistent with a
value of x = 0.13 +/- 0.01(stat) +/- 0.05(syst) at both energies. The
experimental results at both energies, scaled by inelastic p(pbar)+p collision
data, agree within systematic errors. The ratio of the data was found not to
depend on centrality over the studied range and yields a simple linear scale
factor of R_(200/19.6) = 2.03 +/- 0.02(stat) +/- 0.05(syst).Comment: 5 pages, 4 figures, submitted to PRC-R
Energy dependence of particle multiplicities in central Au+Au collisions
We present the first measurement of the pseudorapidity density of primary
charged particles in Au+Au collisions at sqrt(s_NN) = 200GeV. For the 6% most
central collisions, we obtain dN_ch/deta|_|eta|<1 = 650 +/- 35 (syst). Compared
to collisions at sqrt(s_NN) = 130GeV, the highest energy studied previously, an
increase by a factor of 1.14 +/- 0.05 is found. The energy dependence of the
pseudorapidity density is discussed in comparison with data from proton-induced
collisions and theoretical predictions.Comment: 4 pages, 6 figures, submitted to PR
Centrality and pseudorapidity dependence of elliptic flow for charged hadrons in Au+Au collisions at sqrt(sNN) = 200 GeV
This paper describes the measurement of elliptic flow for charged particles
in Au+Au collisions at sqrt(sNN)=200 GeV using the PHOBOS detector at the
Relativistic Heavy Ion Collider (RHIC). The measured azimuthal anisotropy is
presented over a wide range of pseudorapidity for three broad collision
centrality classes for the first time at this energy. Two distinct methods of
extracting the flow signal were used in order to reduce systematic
uncertainties. The elliptic flow falls sharply with increasing eta at 200 GeV
for all the centralities studied, as observed for minimum-bias collisions at
sqrt(sNN)=130 GeV.Comment: Final published version: the most substantive change to the paper is
the inclusion of a complete description of how the errors from the hit-based
and track-based analyses are merged to produce the 90% C.L. errors quoted for
the combined results shown in Fig.
Phobos results on charged particle multiplicity and pseudorapidity distributions in Au+Au, Cu+Cu, d+Au, and p+p collisions at ultra-relativistic energies
Pseudorapidity distributions of charged particles emitted in ,
, , and collisions over a wide energy range have been
measured using the PHOBOS detector at RHIC. The centrality dependence of both
the charged particle distributions and the multiplicity at midrapidity were
measured. Pseudorapidity distributions of charged particles emitted with
, which account for between 95% and 99% of the total
charged-particle emission associated with collision participants, are presented
for different collision centralities. Both the midrapidity density,
, and the total charged-particle multiplicity, , are
found to factorize into a product of independent functions of collision energy,
, and centrality given in terms of the number of nucleons
participating in the collision, . The total charged particle
multiplicity, observed in these experiments and those at lower energies,
assumes a linear dependence of over the full range of
collision energy of =2.7-200 GeV.Comment: 25 pages, 29 figures, 8 table
- …