27 research outputs found

    Solid‐Phase Supports for Oligonucleotide Synthesis

    Full text link
    This unit begins with a discussion of the advantages and disadvantages of oligonucleotide synthesis using solid supports. The physical and chemical properties of solid‐phase supports are discussed in terms of their suitability for oligonucleotide synthesis. In addition, the unit outlines the properties of linkers used for transient or permanent attachment of properly protected nucleosides to the derivatized support, as well as strategies for coupling nucleosides to linkers and conditions for the release of synthetic oligonucleotides from specific supports.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143613/1/cpnc0301.pd

    Inhibition of bovine serum amine oxidase activity by aminoalkyl-aminoanthraquinones

    No full text
    In this study we tested the effect of various aminoalkyl-aminoanthraquinones on the activity of polyamine oxidizing enzymes. It will be shown that the oxidation of the polyamines spermidine and spermine is dramatically inhibited by these compounds.Articl

    New Biocompatible Polyesters Derived from α-Amino Acids: Hydrolytic Degradation Behavior

    No full text
    New polymers were synthesized from α-hydroxy acids derived from the natural amino acids Ile, Leu, Phe, and Val, combined with lactic acid, glycolic acid and 6-hydroxyhexanoic acid by direct condensation. The toxicity was determined and the degradation process of these polyesters was investigated under physiological conditions by analyzing the composition of the degraded polymers and the oligomers cleaved in the buffer medium. The polymers were found to be non toxic to two cell lines. Polymers displayed a biphasic degradation behavior. In most cases, a linear relationship was found between the weight loss constant and the hydrophobicity of the polymers, Log P. Regarding the second stage of weight loss, it is apparent that polymers derived from α-hydroxy(L)isoleucine ((L)HOIle) and α-hydroxy(L)Valine ((L)HOVal) degraded much faster than those derived from α-hydroxy(L)leucine ((L)HOLeu) and α-hydroxy(L)phenylalanine ((L)HOPhe), probably due to different spatial orientation of the side chains. Copolymers of 6-hydroxyhexanoic acid displayed slow degradation rates as expected, whereas the degradation profile of copolymers of lactic acid was similar to the other homopolymers. These new polyesters may serve as potential biocompatible materials for medical applications

    Vipegitide: a folded peptidomimetic partial antagonist of α2β1 integrin with antiplatelet aggregation activity

    No full text
    Tatjana Momic,1 Jehoshua Katzhendler,1 Ela Shai,2 Efrat Noy,3 Hanoch Senderowitz,3 Johannes A Eble,4 Cezary Marcinkiewicz,5 David Varon,2 Philip Lazarovici11School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, 2Department of Hematology, Coagulation Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; 3Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel; 4Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany; 5Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, USAAbstract: Linear peptides containing the sequence WKTSRTSHY were used as lead compounds to synthesize a novel peptidomimetic antagonist of α2β1 integrin, with platelet aggregation-inhibiting activity, named Vipegitide. Vipegitide is a 13-amino acid, folded peptidomimetic molecule, containing two α-aminoisobutyric acid residues at positions 6 and 8 and not stable in human serum. Substitution of glycine and tryptophan residues at positions 1 and 2, respectively, with a unit of two polyethylene glycol (PEG) molecules yielded peptidomimetic Vipegitide-PEG2, stable in human serum for over 3 hours. Vipegitide and Vipegitide-PEG2 showed high potency (7×10-10 M and 1.5×10-10 M, respectively) and intermediate efficacy (40% and 35%, respectively) as well as selectivity toward α2 integrin in inhibition of adhesion of α1/α2 integrin overexpressing cells toward respective collagens. Interaction of both peptidomimetics with extracellular active domain of α2 integrin was confirmed in cell-free binding assay with recombinant α2 A-domain. Integrin α2β1 receptor is found on the platelet membrane and triggers collagen-induced platelet aggregation. Vipegitide and Vipegitide-PEG2 inhibited α2β1 integrin-mediated adhesion of human and murine platelets under the flow condition, by 50%. They efficiently blocked adenosine diphosphate- and collagen I-induced platelet aggregation in platelet rich plasma and whole human blood. Higher potency of Vipegitide than Vipegitide-PEG2 is consistent with results of computer modeling of the molecules in water. These peptidomimetic molecules were acutely tolerated in mice upon intravenous bolus injection of 50 mg/kg. These results underline the potency of Vipegitide and Vipegitide-PEG2 molecules as platelet aggregation-inhibiting drug lead compounds in antithrombotic therapy.Keywords: adhesion, collagen I, platelets, integrin antagonist, peptidomimeti

    Formulation, Release Characteristics and Bioavailability Study of Oral Monolithic Matrix Tablets Containing Carbamazepine

    No full text
    This study examined the release of carbamazepine (CBZ) from hydrophobic (CompritolÂź 888 ATO) and hydrophilic-hydrophobic matrix combination (CompritolÂź 888 ATO-hydroxpropyl methylcellulose, HPMC). Hydrophobic matrix tablets were prepared by hot fusion technique, while hydrophilic-hydrophobic matrix tablets were prepared by wet granulation technique. The properties of the compressed matrix tablets were determined according to the US Pharmacopoeia. Both matrix formulations displayed a controlled-release profile when compared to the reference formulation (TegretolÂź CR 200). The bioavailability of CBZ formulations and TegretolÂź CR 200 were evaluated in beagle dogs. Carbamazepine presented a significant higher bioavailability from matrix tablets containing hydrophilic polymer (HPMC) than that obtained from TegretolÂź CR200. The average inter-subject plasma concentration variability CV% was the least with tablet containing hydrophilic polymer (HPMC) and was the highest with TegretolÂź CR 200 (33.8 and 54.1, respectively). Analysis of variance applied to log \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}AUC0−α{\text{AUC}}_{0 - \alpha } \end{document} and log C max showed statistical significant differences among the three formulations (P < 0.05). Plotting the fraction of CBZ released in vitro and fraction absorbed showed a statistically significant relationship (R2 = 0.935–0.975) for the three matrix tablets examined
    corecore