8 research outputs found

    Clinical accuracy of instrument-based SARS-CoV-2 antigen diagnostic tests:a systematic review and meta-analysis

    Get PDF
    Background: During the COVID-19 pandemic, antigen diagnostic tests were frequently used for screening, triage, and diagnosis. Novel instrument-based antigen tests (iAg tests) hold the promise of outperforming their instrument-free, visually-read counterparts. Here, we provide a systematic review and meta-analysis of the SARS-CoV-2 iAg tests’ clinical accuracy. Methods: We systematically searched MEDLINE (via PubMed), Web of Science, medRxiv, and bioRxiv for articles published before November 7th, 2022, evaluating the accuracy of iAg tests for SARS-CoV-2 detection. We performed a random effects meta-analysis to estimate sensitivity and specificity and used the QUADAS-2 tool to assess study quality and risk of bias. Sub-group analysis was conducted based on Ct value range, IFU-conformity, age, symptom presence and duration, and the variant of concern. Results: We screened the titles and abstracts of 20,431 articles and included 114 publications that fulfilled the inclusion criteria. Additionally, we incorporated three articles sourced from the FIND website, totaling 117 studies encompassing 95,181 individuals, which evaluated the clinical accuracy of 24 commercial COVID-19 iAg tests. The studies varied in risk of bias but showed high applicability. Of 24 iAg tests from 99 studies assessed in the meta-analysis, the pooled sensitivity and specificity compared to molecular testing of a paired NP swab sample were 76.7% (95% CI 73.5 to 79.7) and 98.4% (95% CI 98.0 to 98.7), respectively. Higher sensitivity was noted in individuals with high viral load (99.6% [95% CI 96.8 to 100] at Ct-level ≤ 20) and within the first week of symptom onset (84.6% [95% CI 78.2 to 89.3]), but did not differ between tests conducted as per manufacturer’s instructions and those conducted differently, or between point-of-care and lab-based testing. Conclusion: Overall, iAg tests have a high pooled specificity but a moderate pooled sensitivity, according to our analysis. The pooled sensitivity increases with lower Ct-values (a proxy for viral load), or within the first week of symptom onset, enabling reliable identification of most COVID-19 cases and highlighting the importance of context in test selection. The study underscores the need for careful evaluation considering performance variations and operational features of iAg tests.</p

    Clinical accuracy of instrument-based SARS-CoV-2 antigen diagnostic tests:a systematic review and meta-analysis

    Get PDF
    Background: During the COVID-19 pandemic, antigen diagnostic tests were frequently used for screening, triage, and diagnosis. Novel instrument-based antigen tests (iAg tests) hold the promise of outperforming their instrument-free, visually-read counterparts. Here, we provide a systematic review and meta-analysis of the SARS-CoV-2 iAg tests’ clinical accuracy. Methods: We systematically searched MEDLINE (via PubMed), Web of Science, medRxiv, and bioRxiv for articles published before November 7th, 2022, evaluating the accuracy of iAg tests for SARS-CoV-2 detection. We performed a random effects meta-analysis to estimate sensitivity and specificity and used the QUADAS-2 tool to assess study quality and risk of bias. Sub-group analysis was conducted based on Ct value range, IFU-conformity, age, symptom presence and duration, and the variant of concern. Results: We screened the titles and abstracts of 20,431 articles and included 114 publications that fulfilled the inclusion criteria. Additionally, we incorporated three articles sourced from the FIND website, totaling 117 studies encompassing 95,181 individuals, which evaluated the clinical accuracy of 24 commercial COVID-19 iAg tests. The studies varied in risk of bias but showed high applicability. Of 24 iAg tests from 99 studies assessed in the meta-analysis, the pooled sensitivity and specificity compared to molecular testing of a paired NP swab sample were 76.7% (95% CI 73.5 to 79.7) and 98.4% (95% CI 98.0 to 98.7), respectively. Higher sensitivity was noted in individuals with high viral load (99.6% [95% CI 96.8 to 100] at Ct-level ≤ 20) and within the first week of symptom onset (84.6% [95% CI 78.2 to 89.3]), but did not differ between tests conducted as per manufacturer’s instructions and those conducted differently, or between point-of-care and lab-based testing. Conclusion: Overall, iAg tests have a high pooled specificity but a moderate pooled sensitivity, according to our analysis. The pooled sensitivity increases with lower Ct-values (a proxy for viral load), or within the first week of symptom onset, enabling reliable identification of most COVID-19 cases and highlighting the importance of context in test selection. The study underscores the need for careful evaluation considering performance variations and operational features of iAg tests.</p

    Advanced and Invasive Cardiopulmonary Resuscitation (CPR) Techniques as an Adjunct to Advanced Cardiac Life Support

    No full text
    Background: Despite numerous promising innovations, the chance of survival from sudden cardiac arrest has remained virtually unchanged for decades. Recently, technological advances have been made, user-friendly portable devices have been developed, and advanced invasive procedures have been described that could improve this unsatisfactory situation. Methods: A selective literature search in the core databases with a focus on randomized controlled trials and guidelines. Results: Technical aids, such as feedback systems or automated mechanical cardiopulmonary resuscitation (CPR) devices, can improve chest compression quality. The latter, as well as extracorporeal CPR, might serve as a bridge to treatment (with extracorporeal CPR even as a bridge to recovery). Sonography may be used to improve thoracic compressions on the one hand and to rule out potentially reversible causes of cardiac arrest on the other. Resuscitative endovascular balloon occlusion of the aorta might enhance myocardial and cerebral perfusion. Minithoracostomy, pericardiocentesis, or clamshell thoracotomy might resolve reversible causes of cardiac arrest. Conclusions: It is crucial to identify those patients who may benefit from an advanced or invasive procedure and make the decision to implement the intervention in a timely manner. As with all infrequently performed procedures, sound education and regular training are paramount

    Severe trauma associated cardiac failure

    No full text
    Abstract Although significant efforts have been made to enhance trauma care, the mortality rate for traumatic cardiac arrest (TCA) remains exceedingly high. Therefore, our institution has implemented special measures to optimize the treatment of major trauma patients. These measures include a prehospital Medical Intervention Car (MIC) and a ‘code red’ protocol in the trauma resuscitation room for patients with TCA or shock. These measures enable the early treatment of reversible causes of TCA and have resulted in a significant number of patients achieving adequate ROSC. However, a significant proportion of these patients still die due to circulatory failure shortly after. Our observations from patients who underwent clamshell thoracotomy or received echocardiographic evaluation in conjunction with current scientific findings led us to conclude that dysfunction of the heart itself may be the cause. Therefore, we propose discussing severe trauma-associated cardiac failure (STAC) as a new entity to facilitate scientific research and the development of specific treatment strategies, with the aim of improving the outcome of severe trauma

    Out-of-hospital cardiac arrest in children: an epidemiological study based on the German Resuscitation Registry identifying modifiable factors for return of spontaneous circulation

    No full text
    Abstract Aim This work provides an epidemiological overview of out-of-hospital cardiac arrest (OHCA) in children in Germany between 2007 and 2021. We wanted to identify modifiable factors associated with survival. Methods Data from the German Resuscitation Registry (GRR) were used, and we included patients registered between 1st January 2007 and 31st December 2021. We included children aged between > 7 days and 17 years, where cardiopulmonary resuscitation (CPR) was started, and treatment was continued by emergency medical services (EMS). Incidences and descriptive analyses are presented for the overall cohort and each age group. Multivariate binary logistic regression was performed on the whole cohort to determine the influence of (1) CPR with/without ventilation started by bystander, (2) OHCA witnessed status and (3) night-time on the outcome hospital admission with return of spontaneous circulation (ROSC). Results OHCA in children aged  1 year. Bystander-witnessed OHCA and bystander CPR rate were highest in children aged 1–4 years, with 43.9% and 62.3%, respectively. In reference to EMS-started CPR, bystander CPR with ventilation were associated with an increased odds ratio for ROSC at hospital admission after adjusting for age, sex, year of OHCA and location of OHCA. Conclusion This study provides an epidemiological overview of OHCA in children in Germany and identifies bystander CPR with ventilation as one primary factor for survival. Trial registrations German Clinical Trial Register: DRKS00030989, December 28th 2022. Graphical Abstrac

    Comparing SARS-CoV-2 antigen-detection rapid diagnostic tests for COVID-19 self-testing/self-sampling with molecular and professional-use tests:a systematic review and meta-analysis

    Get PDF
    Self-testing is an effective tool to bridge the testing gap for several infectious diseases; however, its performance in detecting SARS-CoV-2 using antigen-detection rapid diagnostic tests (Ag-RDTs) has not been systematically reviewed. This study aimed to inform WHO guidelines by evaluating the accuracy of COVID-19 self-testing and self-sampling coupled with professional Ag-RDT conduct and interpretation. Articles on this topic were searched until November 7th, 2022. Concordance between self-testing/self-sampling and fully professional-use Ag-RDTs was assessed using Cohen’s kappa. Bivariate meta-analysis yielded pooled performance estimates. Quality and certainty of evidence were evaluated using QUADAS-2 and GRADE tools. Among 43 studies included, twelve reported on self-testing, and 31 assessed self-sampling only. Around 49.6% showed low risk of bias. Overall concordance with professional-use Ag-RDTs was high (kappa 0.91 [95% confidence interval (CI) 0.88–0.94]). Comparing self-testing/self-sampling to molecular testing, the pooled sensitivity and specificity were 70.5% (95% CI 64.3–76.0) and 99.4% (95% CI 99.1–99.6), respectively. Higher sensitivity (i.e., 93.6% [95% CI 90.4–96.8] for Ct &lt; 25) was estimated in subgroups with higher viral loads using Ct values as a proxy. Despite high heterogeneity among studies, COVID-19 self-testing/self-sampling exhibits high concordance with professional-use Ag-RDTs. This suggests that self-testing/self-sampling can be offered as part of COVID-19 testing strategies. Trial registration: PROSPERO: CRD42021250706.</p

    Accuracy of rapid point-of-care antigen-based diagnostics for SARS-CoV-2: An updated systematic review and meta-analysis with meta-regression analyzing influencing factors

    Get PDF
    Background Comprehensive: information about the accuracy of antigen rapid : diagnostic tests (Ag-RDTs) for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is essential to guide public health decision makers in choosing the best tests and testing policies. In August 2021, we published a systematic review and meta-analysis about the accuracy of Ag-RDTs. We now update this work and analyze the factors influencing test sensitivity in further detail. Methods and findings We registered the review on PROSPERO (registration number: CRD42020225140). We systematically searched preprint and peer-reviewed databases for publications evaluating the accuracy of Ag-RDTs for SARS-CoV-2 until August 31, 2021. Descriptive analyses of all studies were performed, and when more than 4 studies were available, a random-effects meta-analysis was used to estimate pooled sensitivity and specificity with reverse transcription polymerase chain reaction (RT-PCR) testing as a reference. To evaluate factors influencing test sensitivity, we performed 3 different analyses using multivariable mixed-effects meta-regression models. We included 194 studies with 221,878 Ag-RDTs performed. Overall, the pooled estimates of Ag-RDT sensitivity and specificity were 72.0% (95% confidence interval [CI] 69.8 to 74.2) and 98.9% (95% CI 98.6 to 99.1). When manufacturer instructions were followed, sensitivity increased to 76.3% (95% CI 73.7 to 78.7). Sensitivity was markedly better on samples with lower RT-PCR cycle threshold (Ct) values (97.9% [95% CI 96.9 to 98.9] and 90.6% [95% CI 88.3 to 93.0] for Ct-values 90%) when high viral loads are present. With viral load, as estimated by Ct-value, being the most influential factor on their sensitivity, they are especially useful to detect persons with high viral load who are most likely to transmit the virus. To further quantify the effects of other factors influencing test sensitivity, standardization of clinical accuracy studies and access to patient level Ct-values and duration of symptoms are needed
    corecore