35 research outputs found
Back to Basics: Pitting Edema and the Optimization of Hypertension Treatment in Incident Peritoneal Dialysis Patients (BRAZPD)
Systemic arterial hypertension is an important risk factor for cardiovascular disease that is frequently observed in populations with declining renal function. Initiation of renal replacement therapy at least partially decreases signs of fluid overload; however, high blood pressure levels persist in the majority of patients after dialysis initiation. Hypervolemia due to water retention predisposes peritoneal dialysis (PD) patients to hypertension and can clinically manifest in several forms, including peripheral edema. The approaches to detect edema, which include methods such as bioimpedance, inferior vena cava diameter and biomarkers, are not always available to physicians worldwide. For clinical examinations, the presence of pitting located in the lower extremities and/or over the sacrum to diagnose the presence of peripheral edema in their patients are frequently utulized. We evaluated the impact of edema on the control of blood pressure of incident PD patients during the first year of dialysis treatment. Patients were recruited from 114 Brazilian dialysis centers that were participating in the BRAZPD study for a total of 1089 incident patients. Peripheral edema was diagnosed by the presence of pitting after finger pressure was applied to the edematous area. Patients were divided into 2 groups: those with and without edema according to the monthly medical evaluation. Blood arterial pressure, body mass index, the number of antihypertensive drugs and comorbidities were analyzed. We observed an initial BP reduction in the first five months and a stabilization of blood pressure levels from five to twelve months. The edematous group exhibited higher blood pressure levels than the group without edema during the follow-up. The results strongly indicate that the presence of a simple and easily detectable clinical sign of peripheral edema is a very relevant tool that could be used to re-evaluate not only the patient's clinical hypertensive status but also the PD prescription and patient compliance
Sympathetic Activation and Baroreflex Function during Intradialytic Hypertensive Episodes
BACKGROUND: The mechanisms of intradialytic increases in blood pressure are not well defined. The present study was undertaken to assess the role of autonomic nervous system activation during intradialytic hypertensive episodes. METHODOLOGY/PRINCIPAL FINDINGS: Continuous interbeat intervals (IBI) and systolic blood pressure (SBP) were monitored during hemodialysis in 108 chronic patients. Intradialytic hypertensive episodes defined as a period of at least 10 mmHg increase in SBP between the beginning and the end of a dialysis session or hypertension resistant to ultrafiltration occurring during or immediately after the dialysis procedure, were detected in 62 out of 113 hemodialysis sessions. SBP variability, IBI variability and baroreceptor sensitivity (BRS) in the low (LF) and high (HF) frequency ranges were assessed using the complex demodulation technique (CDM). Intradialytic hypertensive episodes were associated with an increased (n = 45) or decreased (n = 17) heart rate. The maximal blood pressure was similar in both groups. In patients with increased heart rate the increase in blood pressure was associated with marked increases in SBP and IBI variability, with suppressed BRS indices and enhanced sympatho-vagal balance. In contrast, in those with decreased heart rate, there were no significant changes in the above parameters. End-of-dialysis blood pressure in all sessions associated with hypertensive episode was significantly higher than in those without such episodes. In logistic regression analysis, predialysis BRS in the low frequency range was found to be the main predictor of intradialytic hypertension. CONCLUSION/SIGNIFICANCE: Our data point to sympathetic overactivity with feed-forward blood pressure enhancement as an important mechanism of intradialytic hypertension in a significant proportion of patients. The triggers of increased sympathetic activity during hemodialysis remain to be determined. Intradialytic hypertensive episodes are associated with higher end-of-dialysis blood pressure, suggesting that intradialytic hypertension may play a role in generation of interdialytic hypertension
Analytic assessment of the various bioimpedance methods used to estimate body water
Knowledge of patient fluid distribution would be useful clinically. Both single-frequency (SF) and impedance modeling approaches are proposed. The high intercorrelation between body water compartments makes determining the best approach difficult. This study was conducted to evaluate the merits of an SF approach. Mathematical simulation was performed to determine the effect of tissue change on resistance and reactance. Dilution results were reanalyzed, and resistance and parallel reactance were used to predict the intracellular water for two groups. Results indicated that the amount of intracellular and extracellular water conduction at any SF can vary with tissue change, and reactance at any SF is affected by all tissue parameters. Modeling provided a good prediction of dilution intracellular and extracellular water, but an SF method did not. Intracellular, extracellular, and total body water were equally predicted at all frequencies by SF resistance and parallel reactance. Extracellular and intracellular water are best measured through modeling, because only at the zero and infinite frequencies are the results sensitive only to extracellular and intracellular water. At all other frequencies there are other effects
Analytic assessment of the various bioimpedance methods used to estimate body water
Knowledge of patient fluid distribution would be useful clinically. Both single-frequency (SF) and impedance modeling approaches are proposed. The high intercorrelation between body water compartments makes determining the best approach difficult. This study was conducted to evaluate the merits of an SF approach. Mathematical simulation was performed to determine the effect of tissue change on resistance and reactance. Dilution results were reanalyzed, and resistance and parallel reactance were used to predict the intracellular water for two groups. Results indicated that the amount of intracellular and extracellular water conduction at any SF can vary with tissue change, and reactance at any SF is affected by all tissue parameters. Modeling provided a good prediction of dilution intracellular and extracellular water, but an SF method did not. Intracellular, extracellular, and total body water were equally predicted at all frequencies by SF resistance and parallel reactance. Extracellular and intracellular water are best measured through modeling, because only at the zero and infinite frequencies are the results sensitive only to extracellular and intracellular water. At all other frequencies there are other effects