19,038 research outputs found

    Temperature reducing coating for metals subject to flame exposure Patent

    Get PDF
    Anodizing method for providing metal surfaces with temperature reducing coatings against flame

    Development of a magneforming process for the fabrication of thin-wall tungsten cylinders final report

    Get PDF
    Magneforming process - high energy rate metal forming technique for fabrication of thin wall tungsten cylinder

    Superpotentials from variational derivatives rather than Lagrangians in relativistic theories of gravity

    Full text link
    The prescription of Silva to derive superpotential equations from variational derivatives rather than from Lagrangian densities is applied to theories of gravity derived from Lovelock Lagrangians in the Palatini representation. Spacetimes are without torsion and isolated sources of gravity are minimally coupled. On a closed boundary of spacetime, the metric is given and the connection coefficients are those of Christoffel. We derive equations for the superpotentials in these conditions. The equations are easily integrated and we give the general expression for all superpotentials associated with Lovelock Lagrangians. We find, in particular, that in Einstein's theory, in any number of dimensions, the superpotential, valid at spatial and at null infinity, is that of Katz, Bicak and Lynden-Bell, the KBL superpotential. We also give explicitly the superpotential for Gauss-Bonnet theories of gravity. Finally, we find a simple expression for the superpotential of Einstein-Gauss-Bonnet theories with an anti-de Sitter background: it is minus the KBL superpotential, confirming, as it should, the calculation of the total mass-energy of spacetime at spatial infinity by Deser and Tekin.Comment: Scheduled to appear in Class. Quantum Grav. August 200

    Parametrically excited "Scars" in Bose-Einstein condensates

    Full text link
    Parametric excitation of a Bose-Einstein condensate (BEC) can be realized by periodically changing the interaction strength between the atoms. Above some threshold strength, this excitation modulates the condensate density. We show that when the condensate is trapped in a potential well of irregular shape, density waves can be strongly concentrated ("scarred") along the shortest periodic orbits of a classical particle moving within the confining potential. While single-particle wave functions of systems whose classical counterpart is chaotic may exhibit rich scarring patterns, in BEC, we show that nonlinear effects select mainly those scars that are locally described by stripes. Typically, these are the scars associated with self retracing periodic orbits that do not cross themselves in real space. Dephasing enhances this behavior by reducing the nonlocal effect of interference

    Gravitational energy

    Full text link
    Observers at rest in a stationary spacetime flat at infinity can measure small amounts of rest-mass+internal energies+kinetic energies+pressure energy in a small volume of fluid attached to a local inertial frame. The sum of these small amounts is the total "matter energy" for those observers. The total mass-energy minus the matter energy is the binding gravitational energy. Misner, Thorne and Wheeler evaluated the gravitational energy of a spherically symmetric static spacetime. Here we show how to calculate gravitational energy in any static and stationary spacetime for isolated sources with a set of observers at rest. The result of MTW is recovered and we find that electromagnetic and gravitational 3-covariant energy densities in conformastatic spacetimes are of opposite signs. Various examples suggest that gravitational energy is negative in spacetimes with special symmetries or when the energy-momentum tensor satisfies usual energy conditions.Comment: 12 pages. Accepted for publication in Class. Quantum Gra

    The growth of galaxies in cosmological simulations of structure formation

    Get PDF
    We use hydrodynamic simulations to examine how the baryonic components of galaxies are assembled, focusing on the relative importance of mergers and smooth accretion in the formation of ~L_* systems. In our primary simulation, which models a (50\hmpc)^3 comoving volume of a Lambda-dominated cold dark matter universe, the space density of objects at our (64-particle) baryon mass resolution threshold, M_c=5.4e10 M_sun, corresponds to that of observed galaxies with L~L_*/4. Galaxies above this threshold gain most of their mass by accretion rather than by mergers. At the redshift of peak mass growth, z~2, accretion dominates over merging by about 4:1. The mean accretion rate per galaxy declines from ~40 M_sun/yr at z=2 to ~10 M_sun/yr at z=0, while the merging rate peaks later (z~1) and declines more slowly, so by z=0 the ratio is about 2:1. We cannot distinguish truly smooth accretion from merging with objects below our mass resolution threshold, but extrapolating our measured mass spectrum of merging objects, dP/dM ~ M^a with a ~ -1, implies that sub-resolution mergers would add relatively little mass. The global star formation history in these simulations tracks the mass accretion rate rather than the merger rate. At low redshift, destruction of galaxies by mergers is approximately balanced by the growth of new systems, so the comoving space density of resolved galaxies stays nearly constant despite significant mass evolution at the galaxy-by-galaxy level. The predicted merger rate at z<~1 agrees with recent estimates from close pairs in the CFRS and CNOC2 redshift surveys.Comment: Submitted to ApJ, 35 pp including 15 fig

    Echo spectroscopy of bulk Bogoliubov excitations in trapped Bose-Einstein condensates

    Full text link
    We propose and demonstrate an echo method to reduce the inhomogeneous linewidth of Bogoliubov excitations, in a harmonically-trapped Bose-Einstein condensate. Our proposal includes the transfer of excitations with momentum +q to -q using a double two photon Bragg process, in which a substantial reduction of the inhomogeneous broadening is calculated. Furthermore, we predict an enhancement in the method's efficiency for low momentum due to many-body effects. The echo can also be implemented by using a four photon process, as is demonstrated experimentally.Comment: 4 pages, 5 figure

    What's age got to do with it? Supreme Court appointees and the long run location of the Supreme Court median justice

    Get PDF
    For approximately the past forty years, Republican Presidents have appointed younger Justices than have Democratic Presidents. Depending on how one does the accounting, the average age difference will vary, but will not go away. This Article posits that Republicans appointing younger justices than Democrats may have caused a rightward shift in the Supreme Court. We use computer simulations to show that if the trend continues the rightward shift will likely increase. We also produce some very rough estimates of the size of the ideological shift, contingent on the size of the age differential. In addition, we show that the Senate’s role in confirming nominated Justices has a significant moderating effect on the shift. Last, we consider the interaction between our results and the oft-proposed eighteen year staggered terms for Supreme Court Justices. We show that such an institutional change would almost completely wipe out the ideological effect of one Party appointing younger Justices

    What’s age to do with it? Supreme Court appointees and the long run location of the Supreme Court median justice

    Get PDF
    [No abstract
    • …
    corecore