7 research outputs found

    E. coli catheter-associated urinary tract infections are associated with distinctive virulence and biofilm gene determinants

    Get PDF
    Urinary catheterization facilitates urinary tract colonization by E. coli and increases infection risk. Here, we aimed to identify strain-specific characteristics associated with the transition from colonization to infection in catheterized patients. In a single-site study population, we compared E. coli isolates from patients with catheter-associated asymptomatic bacteriuria (CAASB) to those with catheter-associated urinary tract infection (CAUTI). CAUTI isolates were dominated by a phylotype B2 subclade containing the multidrug-resistant ST131 lineage relative to CAASB isolates, which were phylogenetically more diverse. A distinctive combination of virulence-associated genes was present in the CAUTI-associated B2 subclade. Catheter-associated biofilm formation was widespread among isolates and did not distinguish CAUTI from CAASB strains. Preincubation with CAASB strains could inhibit catheter colonization by multiple ST131 CAUTI isolates. Comparative genomic analysis identified a group of variable genes associated with high catheter biofilm formation present in both CAUTI and CAASB strains. Among these, ferric citrate transport (Fec) system genes were experimentally associated with enhanced catheter biofilm formation using reporter and fecA deletion strains. These results are consistent with a variable role for catheter biofilm formation in promoting CAUTI by ST131-like strains or resisting CAUTI by lower-risk strains that engage in niche exclusion

    Prolonged response of recurrent IDH-wild-type glioblastoma to laser interstitial thermal therapy with pembrolizumab

    Get PDF
    Despite the improved understanding of the molecular and genetic heterogeneity of glioblastoma, there is still an unmet need for better therapeutics, as treatment approaches have remained unchanged in recent years. Research into the role of the immune microenvironment has generated enthusiasm for testing immunotherapy (specifically, immune checkpoint inhibitors). However, to date, trials of immunotherapy in glioblastoma have not demonstrated a survival advantage. Combination approaches aimed at optimally inducing response to immune checkpoint inhibitors with radiotherapy are currently being investigated. Herein, the authors describe their experience of the potential benefit and clinical outcomes of using combination pembrolizumab (an immune checkpoint inhibitor) and laser interstitial thermal therapy in a case series of patients with recurren

    Structure and Photoluminescent Properties of ZnO Encapsulated in Mesoporous Silica SBA-15 Fabricated by Two-Solvent Strategy

    Get PDF
    The two-solvent method was employed to prepare ZnO encapsulated in mesoporous silica (ZnO/SBA-15). The prepared ZnO/SBA-15 samples have been studied by X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, nitrogen adsorption–desorption isotherm, and photoluminescence spectroscopy. The ZnO/SBA-15 nanocomposite has the ordered hexagonal mesostructure of SBA-15. ZnO clusters of a high loading are distributed in the channels of SBA-15. Photoluminescence spectra show the UV emission band around 368 nm, the violet emission around 420 nm, and the blue emission around 457 nm. The UV emission is attributed to band-edge emission of ZnO. The violet emission results from the oxygen vacancies on the ZnO–SiO2interface traps. The blue emission is from the oxygen vacancies or interstitial zinc ions of ZnO. The UV emission and blue emission show a blue-shift phenomenon due to quantum-confinement-induced energy gap enhancement of ZnO clusters. The ZnO clusters encapsulated in SBA-15 can be used as light-emitting diodes and ultraviolet nanolasers

    The Yersinia high-pathogenicity island encodes a siderophore-dependent copper response system in uropathogenic Escherichia coli

    Get PDF
    Siderophores are iron chelators used by microbes to bind and acquire iron, which, once in the cell, inhibits siderophore production through feedback repression mediated by the ferric uptake repressor (Fur). Yersiniabactin (Ybt), a siderophore associated with enhanced pathogenic potential amon

    Yersiniabactin is a quorum-sensing autoinducer and siderophore in uropathogenic Escherichia coli

    Get PDF
    ABSTRACTSiderophores are secreted ferric ion chelators used to obtain iron in nutrient-limited environmental niches, including human hosts. While all Escherichia coli express the enterobactin (Ent) siderophore system, isolates from patients with urinary tract infections additionally express the genetically distinct yersiniabactin (Ybt) siderophore system. To determine whether the Ent and Ybt systems are functionally redundant for iron uptake, we compared the growth of different isogenic siderophore biosynthetic mutants in the presence of transferrin, a human iron-binding protein. We observed that Ybt expression does not compensate for deficient Ent expression following low-density inoculation. Using transcriptional and product analysis, we found this non-redundancy to be attributable to a density-dependent transcriptional stimulation cycle in which Ybt functions as an autoinducer. These results distinguish the Ybt system as a combined quorum-sensing and siderophore system. These functions may reflect Ybt as a public good within bacterial communities or as an adaptation to confined, subcellular compartments in infected hosts. This combined functionality may contribute to the extraintestinal pathogenic potential of E. coli and related Enterobacterales.IMPORTANCEPatients with urinary tract infections are often infected with Escherichia coli strains carrying adaptations that increase their pathogenic potential. One of these adaptations is the accumulation of multiple siderophore systems, which scavenge iron for nutritional use. While iron uptake is important for bacterial growth, the increased metabolic costs of siderophore production could diminish bacterial fitness during infections. In a siderophore-dependent growth condition, we show that the virulence-associated yersiniabactin siderophore system in uropathogenic E. coli is not redundant with the ubiquitous E. coli enterobactin system. This arises not from differences in iron-scavenging activity but because yersiniabactin is preferentially expressed during bacterial crowding, leaving bacteria dependent upon enterobactin for growth at low cell density. Notably, this regulatory mode arises because yersiniabactin stimulates its own expression, acting as an autoinducer in a previously unappreciated quorum-sensing system. This unexpected result connects quorum-sensing with pathogenic potential in E. coli and related Enterobacterales

    Camps for People in Flight

    No full text
    corecore