31 research outputs found

    Stripe charge ordering in SrO-terminated SrTiO3(001) surfaces

    Full text link
    The local electronic structure of the SrO-terminated SrTiO3(001) surface was explored using scanning tunneling microscopy. At low bias voltages in the empty states, a unidirectional structure with a periodicity of 3 unit cells, superimposed on a c(2 x 2) reconstructed structure, was found to develop along the crystallographic a axis. This structure indicates a charge-ordered stripe induced by carrier doping from oxygen vacancies in the SrO and the subsurface TiO2 planes. In the filled states, localized deep in-gap states were observed in addition to large energy gaps in the tunneling spectra. This result represents inelastic tunneling due to significant electron-lattice interaction associated with unidirectional lattice distortion in the SrO-terminated surface.Comment: 6 pages, 5 figures, accepted for publication in PR

    Atomically Resolved Surface Structure of SrTiO3(001) Thin Films Grown in Step-Flow Mode by Pulsed Laser Deposition

    Full text link
    The surface structure of SrTiO3(001) thin films homoepitaxially grown by PLD in step-flow mode was characterized using low temperature STM. It was found that one-dimensional (1D) TiOx-based nanostructures were formed on the thin film surface and their density increased with increasing thin film thickness. Most of the 1D nanostructures disappeared after a post-deposition annealing, indicating that this structure is metastable due to the nonequilibrium growth mode. The resulting surface after annealing exhibited similar features to that of a thinner film, having a domain structure with (2x1) and (1x2) reconstructions, but with fewer oxygen-vacancy-type defects. These results imply that the step-flow growth is likely to produce TiOx-rich surface and Ti deficiencies in the film. By the post-deposition annealing, the rich TiOx would diffuse from the surface into the film to compensate defects associated with Ti vacancies and oxygen vacancies, resulting in the stable surface structure with fewer oxygen vacancies. Thus, STM measurements can provide us with a microscopic picture of surface stoichiometry of thin films originating in the dynamics of the growth process, and can present a new approach for designing functional oxide films.Comment: 12 pages, 4 figure

    Time-resolved force microscopy using delay-time modulation method

    Full text link
    We developed a time-resolved force microscopy technique by integrating atomic force microscopy using a tuning-fork-type cantilever with the delay time modulation method for optical pump-probe light. We successfully measured the dynamics of surface recombination and diffusion of photoexcited carriers in bulk WSe2, which is challenging owing to the effect of tunneling current in time-resolved scanning tunneling microscopy. The obtained results were comprehensively explained with the model based on the dipole-dipole interaction induced by photo illumination.Comment: 13 pages, 4 figure

    Atomic-scale visualization of initial growth of homoepitaxial SrTiO3 thin film on an atomically ordered substrate

    Full text link
    The initial homoepitaxial growth of SrTiO3 on a (\surd13\times\surd13) - R33.7{\deg}SrTiO3(001) substrate surface, which can be prepared under oxide growth conditions, is atomically resolved by scanning tunneling microscopy. The identical (\surd13\times\surd13) atomic structure is clearly visualized on the deposited SrTiO3 film surface as well as on the substrate. This result indicates the transfer of the topmost Ti-rich (\surd13\times\surd13) structure to the film surface and atomic-scale coherent epitaxy at the film/substrate interface. Such atomically ordered SrTiO3 substrates can be applied to the fabrication of atom-by-atom controlled oxide epitaxial films and heterostructures

    Direct observation of the washboard noise of a driven vortex lattice in a high-temperature superconductor, Bi2Sr2CaCu2Oy

    Full text link
    We studied the conduction noise spectrum in the vortex state of a high-temperature superconductor, Bi2Sr2CaCu2Oy, subject to a uniform driving force. Two characteristic features, a broadband noise (BBN) and a narrow-band noise (NBN), were observed in the vortex-solid phase. The origin of the large BBN was determined to be plastic motion of the vortices, whereas the NBN was found to originate from the washboard modulation of the translational velocity of the driven vortices. We believe this to be the first observation ofComment: 4 pages, 4 figures, to appear in Phys. Rev. Let

    The electronic state of vortices in YBa2Cu3Oy investigated by complex surface impedance measurement

    Full text link
    The electromagnetic response to microwaves in the mixed state of YBa2Cu3Oy(YBCO) was measured in order to investigate the electronic state inside and outside the vortex core. The magnetic-field dependence of the complex surface impedance at low temperatures was in good agreement with a general vortex dynamics description assuming that the field-independent viscous damping force and the linear restoring force were acting on the vortices. In other words, both real and imaginary parts of the complex resistivity, \rho_1, and \rho_2, were linear in B. This is explained by theories for d-wave superconductors. Using analysis based on the Coffey-Clem description of the complex penetration depth, we estimated that the vortex viscosity \eta at 10 K was (4 \sim 5) \times 10^{-7} Ns/m^2. This value corresponds to \omega_0 \tau \sim 0.3 - 0.5, where \omega_0 and \tau are the minimal gap frequency and the quasiparticle lifetime in the vortex core, respectively. These results suggest that the vortex core in YBCO is in the moderately clean regime. Investigation of the moderately clean vortex core in high-temperature superconductors is significant because physically new effects may be expected due to d-wave characteristics and to the quantum nature of cuprate superconductors. The behavior of Z_s as a function of B across the first order transition (FOT) of the vortex lattice was also investigated. Unlike Bi2Sr2CaCu2Oy (BSCCO), no distinct anomaly was observed around the FOT in YBCO. Our results suggest that the rapid increase of X_s due to the change of superfluid density at the FOT would be observed only in highly anisotropic two-dimensional vortex systems like BSCCO. We discuss these results in terms of the difference of the interlayer coupling and the energy scale between the two materials.Comment: 10 pages, 6 figures, to be published in Phys. Rev. B, one reference adde
    corecore