21 research outputs found

    Rab3a, a small GTP-binding protein, is required for the stabilization of the murine leukaemia virus Gag protein

    Get PDF
    We recently identified a CD63-interacting protein to understand the role of CD63 in virion production of the human immunodeficiency virus type 1, and we have found that Rab3a forms a complex with CD63. In this study, we analysed the effect of Rab3a on virion production of the murine leukaemia virus (MLV), which is another member of the retrovirus family. We found that Rab3a silencing induced lysosomal degradation of the MLV Gag protein, and recovery of the Rab3a expression restored the level of the Gag protein through a complex formation of MLV Gag and Rab3a, indicating that Rab3a is required for MLV Gag protein expression. In contrast, CD63 silencing decreased the infectivity of released virions but had no effect on virion production, indicating that CD63 facilitates the infectivity of released MLV particles. Although Rab3a induced CD63 degradation in uninfected cells, the complex of MLV Gag and Rab3a suppressed the Rab3a-mediated CD63 degradation in MLV-infected cells. Finally, we found that the MLV Gag protein interacts with Rab3a to stabilize its own protein and CD63 that facilitates the infectivity of released MLV particles. Considering the involvement of Rab3a in lysosome trafficking to the plasma membrane, it may also induce cell surface transport of the MLV Gag protein

    Androgen-independent proliferation of LNCaP prostate cancer cells infected by xenotropic murine leukemia virus-related virus

    Get PDF
    Xenotropic murine leukemia virus-related virus (XMRV) is a novel gammaretrovirus that was originally isolated from human prostate cancer. It is now believed that XMRV is not the etiologic agent of prostate cancer. An analysis of murine leukemia virus (MLV) infection in various human cell lines revealed that prostate cancer cell lines are preferentially infected by XMRV, and this suggested that XMRV infection may confer some sort of growth advantage to prostate cancer cell lines. To examine this hypothesis, androgen-dependent LNCaP cells were infected with XMRV and tested for changes in certain cell growth properties. We found that XMRV-infected LNCaP cells can proliferate in the absence of the androgen dihydrotestosterone. Moreover, androgen receptor expression is significantly reduced in XMRV-infected LNCaP cells. Such alterations were not observed in uninfected and amphotropic MLV-infected LNCaP cells. This finding explains why prostate cancer cell lines are preferentially infected with XMRV

    CXCR4-Tropic, But Not CCR5-Tropic, Human Immunodeficiency Virus Infection Is Inhibited by the Lipid Raft-Associated Factors, Acyclic Retinoid Analogs, and Cholera Toxin B Subunit

    Get PDF
    Development of an effective low-cost anti-acquired immunodeficiency syndrome (AIDS) drugs is needed for treatment of AIDS patients in developing countries. Host cell lipid raft microdomains, which are enriched with cholesterol, glycolipids, ceramide, and gangliosides, are important for human immunodeficiency virus type 1 (HIV-1) entry. Retinoid analogs have been shown to modulate ceramide levels in the cell membrane, while cholera toxin B subunit (CT-B) specifically binds to the ganglioside GM1. In this study, we found that the acyclic retinoid analogs geranylgeranoic acid (GGA) and NIK-333 as well as CT-B efficiently attenuate CXCR4-tropic, but not CCR5-tropic, HIV-1 vector infection. We also found that GGA and NIK-333 suppress CXCR4-tropic HIV-1 infection by attenuating CXCR4 expression. CT-B also attenuated CXCR4-tropic HIV-1 infection, but did not suppress CXCR4 expression. These results suggest a distinct role for lipid raft microdomains in CXCR4- and CCR5-tropic HIV-1 infections and illuminate novel agents for the development of AIDS therapy

    Infection of XC Cells by MLVs and Ebola Virus Is Endosome-Dependent but Acidification-Independent

    Get PDF
    Inhibitors of endosome acidification or cathepsin proteases attenuated infections mediated by envelope proteins of xenotropic murine leukemia virus-related virus (XMRV) and Ebola virus, as well as ecotropic, amphotropic, polytropic, and xenotropic murine leukemia viruses (MLVs), indicating that infections by these viruses occur through acidic endosomes and require cathepsin proteases in the susceptible cells such as TE671 cells. However, as previously shown, the endosome acidification inhibitors did not inhibit these viral infections in XC cells. It is generally accepted that the ecotropic MLV infection in XC cells occurs at the plasma membrane. Because cathepsin proteases are activated by low pH in acidic endosomes, the acidification inhibitors may inhibit the viral infections by suppressing cathepsin protease activation. The acidification inhibitors attenuated the activities of cathepsin proteases B and L in TE671 cells, but not in XC cells. Processing of cathepsin protease L was suppressed by the acidification inhibitor in NIH3T3 cells, but again not in XC cells. These results indicate that cathepsin proteases are activated without endosome acidification in XC cells. Treatment with an endocytosis inhibitor or knockdown of dynamin 2 expression by siRNAs suppressed MLV infections in all examined cells including XC cells. Furthermore, endosomal cathepsin proteases were required for these viral infections in XC cells as other susceptible cells. These results suggest that infections of XC cells by the MLVs and Ebola virus occur through endosomes and pH-independent cathepsin activation induces pH-independent infection in XC cells

    Pheochromocytoma multisystem crisis treated with emergency surgery: a case report and literature review

    Get PDF
    Background: Pheochromocytoma is a neuroendocrine tumor that predominantly presents with hypertension, palpitations, and tachycardia due to excessive catecholamine excretion. Although pheochromocytoma multisystem crisis (PMC) is relatively rare, urologists and clinicians should focus on early diagnosis as delay in initiating the appropriate treatment can lead to mortality Case presentation: A 70-year-old man developed ileus after a few days of medication for hypertension. Computed tomography incidentally revealed a left adrenal mass. This finding together with his clinical course was compatible with pheochromocytoma. An α-blocker was administered immediately, and his blood pressure was well controlled. However, his general condition and laboratory data deteriorated rapidly, and the patient was diagnosed with PMC with lethal status. Thus, emergency adrenalectomy was performed without confirmation of catecholamine levels. From the resected specimen, his tumor was judged as pheochromocytoma. On immunohistochemical analysis, the proliferation index evaluated by Ki-67 staining was 9.7 %. This case report was approved by the Human Ethics Review Committee of the Nagasaki University Hospital. Conclusion: The present case of PMC was successfully treated with emergency surgery. The benign pheochromocytoma also presented with high cell proliferation potential, which may be a cause of the extreme aggressiveness of PMC

    Susceptibility of muridae cell lines to ecotropic murine leukemia virus and the cationic amino acid transporter 1 viral receptor sequences: implications for evolution of the viral receptor

    Get PDF
    Ecotropic murine leukemia viruses (Eco-MLVs) infect mouse and rat, but not other mammalian cells, and gain access for infection through binding the cationic amino acid transporter 1 (CAT1). Glycosylation of the rat and hamster CAT1s inhibits Eco-MLV infection, and treatment of rat and hamster cells with a glycosylation inhibitor, tunicamycin, enhances Eco-MLV infection. Although the mouse CAT1 is also glycosylated, it does not inhibit Eco-MLV infection. Comparison of amino acid sequences between the rat and mouse CAT1s shows amino acid insertions in the rat protein near the Eco-MLV-binding motif. In addition to the insertion present in the rat CAT1, the hamster CAT1 has additional amino acid insertions. In contrast, tunicamycin treatment of mink and human cells does not elevate the infection, because their CAT1s do not have the Eco-MLV-binding motif. To define the evolutionary pathway of the Eco-MLV receptor, we analyzed CAT1 sequences and susceptibility to Eco-MLV infection of other several murinae animals, including the southern vole (Microtus rossiaemeridionalis), large Japanese field mouse (Apodemus speciosus), and Eurasian harvest mouse ( Micromys minutus). Eco-MLV infection was enhanced by tunicamycin in these cells, and their CAT1 sequences have the insertions like the hamster CAT1. Phylogenetic analysis of mammalian CAT1s suggested that the ancestral CAT1 does not have the Eco-MLV-binding motif, like the human CAT1, and the mouse CAT1 is thought to be generated by the amino acid deletions in the third extracellular loop of CAT1
    corecore