14 research outputs found
Recovery from Unrecognized Sleep Loss Accumulated in Daily Life Improved Mood Regulation via Prefrontal Suppression of Amygdala Activity
Many modern people suffer from sleep debt that has accumulated in everyday life but is not subjectively noticed [potential sleep debt (PSD)]. Our hypothesis for this study was that resolution of PSD through sleep extension optimizes mood regulation by altering the functional connectivity between the amygdala and prefrontal cortex. Fifteen healthy male participants underwent an experiment consisting of a baseline (BL) evaluation followed by two successive interventions, namely, a 9-day sleep extension followed by one night of total sleep deprivation (TSD). Tests performed before and after the interventions included a questionnaire on negative mood and neuroimaging with arterial spin labeling MRI for evaluating regional cerebral blood flow (rCBF) and functional connectivity. Negative mood and amygdala rCBF were significantly reduced after sleep extension compared with BL. The amygdala had a significant negative functional connectivity with the medial prefrontal cortex (FCamg–MPFC), and this negative connectivity was greater after sleep extension than at BL. After TSD, these indices reverted to the same level as at BL. An additional path analysis with structural equation modeling showed that the FCamg–MPFC significantly explained the amygdala rCBF and that the amygdala rCBF significantly explained the negative mood. These findings suggest that the use of our sleep extension protocol normalized amygdala activity via negative amygdala–MPFC functional connectivity. The resolution of unnoticed PSD may improve mood by enhancing frontal suppression of hyperactivity in the amygdala caused by PSD accumulating in everyday life
Decreased activity in the reward network of chronic insomnia patients
In modern society, many people have insomnia. Chronic insomnia has been noted as a risk factor for depression. However, there are few functional imaging studies of the brain on affective functions in chronic insomnia. This study aimed to investigate brain activities induced by emotional stimuli in chronic insomnia patients. Fifteen patients with primary insomnia and 30 age and gender matched healthy controls participated in this study. Both groups were presented images of fearful, happy, and neutral expressions consciously and non-consciously while undergoing MRI to compare the activity in regions of the brain responsible for emotions. Conscious presentation of the Happy-Neutral contrast showed significantly lower activation in the right orbitofrontal cortex of patients compared to healthy controls. The Happy-Neutral contrast presented in a non-conscious manner resulted in significantly lower activation of the ventral striatum, right insula, putamen, orbitofrontal cortex and ventral tegmental area in patients compared to healthy controls. Our findings revealed that responsiveness to positive emotional stimuli were decreased in insomniac patients. Specifically, brain networks associated with rewards and processing positive emotions showed decreased responsiveness to happy emotions especially for non-conscious image. The magnitude of activity in these areas also correlated with severity of insomnia, even after controlling for depression scale scores. These findings suggest that insomnia induces an affective functional disorder through an underlying mechanism of decreased sensitivity in the regions of the brain responsible for emotions and rewards to positive emotional stimuli
Interoceptive training impacts the neural circuit of the anterior insula cortex
Abstract Interoception is the perception of afferent information that arises from anywhere and everywhere within the body. Recently, interoceptive accuracy could be enhanced by cognitive training. Given that the anterior insula cortex (AIC) is a key node of interoception, we hypothesized that resting functional connectivity (RSFC) from AIC was involved in an effect of interoceptive training. To address this issue, we conducted a longitudinal intervention study using interoceptive training and obtained RSFC using fMRI before and after the intervention. A heartbeat perception task evaluated interoceptive accuracy. Twenty-two healthy volunteers (15 females, age 19.9 ± 2.0 years) participated. After the intervention, interoceptive accuracy was enhanced, and anxiety levels and somatic symptoms were reduced. Also, RSFC from AIC to the dorsolateral prefrontal cortex (DLPFC), superior marginal gyrus (SMG), anterior cingulate cortex (ACC), and brain stem, including nucleus tractus solitarius (NTS) were enhanced, and those from AIC to the visual cortex (VC) were decreased according to enhanced interoceptive accuracy. The neural circuit of AIC, ACC, and NTS is involved in the bottom-up process of interoception. The neural circuit of AIC, DLPFC, and SMG is involved in the top-down process of interoception, which was thought to represent the cognitive control of emotion. The findings provided a better understanding of neural underpinnings of the effect of interoceptive training on somatic symptoms and anxiety levels by enhancing both bottom-up and top-down processes of interoception, which has a potential contribution to the structure of psychotherapies based on the neural mechanism of psychosomatics
Proof of mechanism investigation of Transcutaneous auricular vagus nerve stimulation through simultaneous measurement of autonomic functions: a randomized controlled trial protocol
Abstract Background The autonomic nervous system plays a vital role in regulating physiological functions. Transcutaneous auricular vagus nerve stimulation (taVNS) is a method that provides insights into autonomic nerve modulation. This paper presents a research protocol investigating proof of mechanism for the impact of taVNS on autonomic functions and aims to both deepen theoretical understanding and pave the way for clinically relevant applications. Methods This protocol employs a single-blind, randomized cross-over design involving 10 healthy male participants. Simultaneous assessment of both the afferent and efferent aspects of the vagus nerve will be performed by integrating physiological measures, magnetic resonance imaging, and a questionnaire survey. Electrocardiogram will be measured to assess changes in heart rate, as a primary outcome, and heart rate variability. Active taVNS and sham stimulation will be compared, which ensures precision and blinding. Electrical stimulation will be applied to the left concha cymba and the left lobule for the active and sham conditions, respectively. The specific parameters of taVNS involve a pulse width of 250 µs, a frequency of 25 Hz, and a current adjusted to the perception threshold (0.1 mA ≤ 5 mA), delivered in cycles of 32 s on and 28 s off. Conclusions This research investigates proof of mechanism for taVNS to elucidate its modulatory effects on the central and peripheral components of the autonomic nervous system. Beyond theoretical insights, the findings will provide a foundation for designing targeted neuromodulation strategies, potentially benefiting diverse patient populations experiencing autonomic dysregulation. By elucidating the neural mechanisms, this study contributes to the evolution of personalized and effective clinical interventions in the field of neuromodulation. Trial Registration JRCT, jRCTs032220332, Registered 13 September 2022; https://jrct.niph.go.jp/latest-detail/jRCTs032220332
Coordinates of the brain areas activated in Observe-negative vs. Look-negative.
<p>Height threshold: <i>p</i> < .001 uncorrected, Extent threshold: <i>k</i> = 5 voxels. The x, y, and z coordinates by which a voxel is determined referring to medial–lateral (x: positive = right), anterior–posterior (y: positive = anterior), and superior–inferior (z: positive = superior) positions denote the peak location on the MNI template. T-scores denote the difference between the two sample means compared with the dispersion and sample sizes of the two samples. Z-scores are the numbers from the unit normal distribution that give the same p value as the t statistic. Abbreviations: BA = Brodmann area; MNI = Montreal Neurological Institute template.</p><p>Coordinates of the brain areas activated in Observe-negative vs. Look-negative.</p
Neural Networks for Mindfulness and Emotion Suppression
<div><p>Mindfulness, an attentive non-judgmental focus on “here and now” experiences, has been incorporated into various cognitive behavioral therapy approaches and beneficial effects have been demonstrated. Recently, mindfulness has also been identified as a potentially effective emotion regulation strategy. On the other hand, emotion suppression, which refers to trying to avoid or escape from experiencing and being aware of one’s own emotions, has been identified as a potentially maladaptive strategy. Previous studies suggest that both strategies can decrease affective responses to emotional stimuli. They would, however, be expected to provide regulation through different top-down modulation systems. The present study was aimed at elucidating the different neural systems underlying emotion regulation via mindfulness and emotion suppression approaches. Twenty-one healthy participants used the two types of strategy in response to emotional visual stimuli while functional magnetic resonance imaging was conducted. Both strategies attenuated amygdala responses to emotional triggers, but the pathways to regulation differed across the two. A mindful approach appears to regulate amygdala functioning via functional connectivity from the medial prefrontal cortex, while suppression uses connectivity with other regions, including the dorsolateral prefrontal cortex. Thus, the two types of emotion regulation recruit different top-down modulation processes localized at prefrontal areas. These different pathways are discussed.</p></div
VAS scores for negative affect after each coping strategy (bars represent standard errors).
<p>Significant differences were found for the comparisons of Look-neutral vs. other conditions and Look-negative vs. Suppress-negative, and Observe-negative. The two types of emotion regulation strategies were effective for regulation of subjective emotion.</p
Coordinates for the brain areas activated in Suppress-negative vs. Look-negative.
<p>Height threshold: <i>p</i> < .001 uncorrected, Extent threshold: <i>k</i> = 5 voxels. The x, y, and z coordinates by which a voxel is determined referring to medial–lateral (x: positive = right), anterior–posterior (y: positive = anterior), and superior–inferior (z: positive = superior) positions denote the peak location on the MNI template. T-scores denote the difference between the two sample means compared with the dispersion and sample sizes of the two samples.Z-scores are the numbers from the unit normal distribution that give the same p value as the t statistic. Abbreviations: BA = Brodmann area; MNI = Montreal Neurological Institute template.</p><p>Coordinates for the brain areas activated in Suppress-negative vs. Look-negative.</p