63 research outputs found

    STATISTICAL ANALYSES TO DETECT AND REFINE GENETIC ASSOCIATIONS WITH NEURODEGENERATIVE DISEASES

    Get PDF
    Dementia is a clinical state caused by neurodegeneration and characterized by a loss of function in cognitive domains and behavior. Alzheimer’s disease (AD) is the most common form of dementia. Although the amyloid β (Aβ) protein and hyperphosphorylated tau aggregates in the brain are considered to be the key pathological hallmarks of AD, the exact cause of AD is yet to be identified. In addition, clinical diagnoses of AD can be error prone. Many previous studies have compared the clinical diagnosis of AD against the gold standard of autopsy confirmation and shown substantial AD misdiagnosis Hippocampal sclerosis of aging (HS-Aging) is one type of dementia that is often clinically misdiagnosed as AD. AD and HS-Aging are controlled by different genetic architectures. Familial AD, which often occurs early in life, is linked to mainly mutations in three genes: APP, PSEN1, and PSEN2. Late-onset AD (LOAD) is strongly associated with the ε4 allele of apolipoprotein E (APOE) gene. In addition to the APOE gene, genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) in or close to some genes associated with LOAD. On the other hand, GRN, TMEM106B, ABCC9, and KCNMB2 have been reported to harbor risk alleles associated with HS-Aging pathology. Although GWAS have succeeded in revealing numerous susceptibility variants for dementias, it is an ongoing challenge to identify functional loci and to understand how they contribute to dementia pathogenesis. Until recently, rare variants were not investigated comprehensively. GWAS rely on genotype imputation which is not reliable for rare variants. Therefore, imputed rare variants are typically removed from GWAS analysis. Recent advances in sequencing technologies enable accurate genotyping of rare variants, thus potentially improving our understanding the role of rare variants on disease. There are significant computational and statistical challenges for these sequencing studies. Traditional single variant-based association tests are underpowered to detect rare variant associations. Instead, more powerful and computationally efficient approaches for aggregating the effects of rare variants have become a standard approach for association testing. The sequence-kernel association test (SKAT) is one of the most powerful rare variant analysis methods. A recently-proposed scan-statistic-based test is another approach to detect the location of rare variant clusters influencing disease. In the first study, we examined the gene-based associations of the four putative risk genes, GRN, TMEM106B, ABCC9, and KCNMB2 with HS-aging pathology. We analyzed haplotype associations of a targeted ABCC9 region with HS-Aging pathology and with ABCC9 gene expression. In the second study, we elucidated the role of the non-coding SNPs identified in the International Genomics of Alzheimer’s Project (IGAP) consortium GWAS within a systems genetics framework to understand the flow of biological information underlying AD. In the last study, we identified genetic regions which contain rare variants associated with AD using a scan-statistic-based approach

    On Combining Family- and Population- Based Sequencing Data

    Get PDF
    Several statistical group-based approaches have been proposed to detect effects of variation within a gene for each of the population- and family-based designs. However, unified tests to combine gene-phenotype associations obtained from these 2 study designs are not yet well established. In this study, we investigated the efficient combination of population-based and family-based sequencing data to evaluate best practices using the Genetic Analysis Workshop 19 (GAW19) data set. Because one design employed whole genome sequencing and the other whole exome sequencing, we examined variants overlapping both data sets. We used the family-based sequence kernel association test (famSKAT) to analyze the family- and population-based data sets separately as well as with a combined data set. These were compared against meta-analysis. Using the combined data, we showed that famSKAT has high power to detect associations between diastolic and/or systolic blood pressures and the genes that have causal variants with large effect sizes, such as MAP4, TNN, and CGN. However, when there was a considerable difference in the powers between family- and population-based data, famSKAT with the combined data had lower power than that from the population-based data alone. The famSKAT test statistic for the combined data can be influenced by sample imbalance from the 2 designs. This underscores the importance of foresight in study design as, in this situation, the greatly lower sample size in the family-based data essentially serves to dilute signal. We observed inflated type I errors in our simulation study, largely when using population-based data, which might be a result of principal components failing to completely account for population admixture in this cohort

    Longitudinal Trajectories of Cholesterol from Midlife through Late Life According to Apolipoprotein E Allele Status

    Get PDF
    Background: Previous research indicates that total cholesterol levels increase with age during young adulthood and middle age and decline with age later in life. This is attributed to changes in diet, body composition, medication use, physical activity, and hormone levels. In the current study we utilized data from the Framingham Heart Study Original Cohort to determine if variations in apolipoprotein E (APOE), a gene involved in regulating cholesterol homeostasis, influence trajectories of total cholesterol, HDL cholesterol, and total: HDL cholesterol ratio from midlife through late life. Methods: Cholesterol trajectories from midlife through late life were modeled using generalized additive mixed models and mixed-effects regression models. Results: APOE e2+ subjects had lower total cholesterol levels, higher HDL cholesterol levels, and lower total: HDL cholesterol ratios from midlife to late life compared to APOE e3 and APOE e4+ subjects. Statistically significant differences in life span cholesterol trajectories according to gender and use of cholesterol-lowering medications were also detected. Conclusion: The findings from this research provide evidence that variations in APOE modify trajectories of serum cholesterol from midlife to late life. In order to efficiently modify cholesterol through the life span, it is important to take into account APOE allele status

    Dichotomous Scoring of TDP-43 Proteinopathy from Specific Brain Regions in 27 Academic Research Centers: Associations with Alzheimer\u27s Disease and Cerebrovascular Disease Pathologies

    Get PDF
    TAR-DNA binding protein 43 (TDP-43) proteinopathy is a common brain pathology in elderly persons, but much remains to be learned about this high-morbidity condition. Published stage-based systems for operationalizing disease severity rely on the involvement (presence/absence) of pathology in specific anatomic regions. To examine the comorbidities associated with TDP-43 pathology in aged individuals, we studied data from the National Alzheimer’s Coordinating Center (NACC) Neuropathology Data Set. Data were analyzed from 929 included subjects with available TDP-43 pathology information, sourced from 27 different American Alzheimer’s Disease Centers (ADCs). Cases with relatively unusual diseases including autopsy-proven frontotemporal lobar degeneration (FTLD-TDP or FTLD-tau) were excluded from the study. Our data provide new information about pathologic features that are and are not associated with TDP-43 pathologies in different brain areas—spinal cord, amygdala, hippocampus, entorhinal cortex/inferior temporal cortex, and frontal neocortex. Different research centers used cite-specific methods including different TDP-43 antibodies. TDP-43 pathology in at least one brain region was common (31.4%) but the pathology was rarely observed in spinal cord (1.8%) and also unusual in frontal cortex (5.3%). As expected, TDP-43 pathology was positively associated with comorbid hippocampal sclerosis pathology and with severe AD pathology. TDP-43 pathology was also associated with comorbid moderate-to-severe brain arteriolosclerosis. The association between TDP-43 pathology and brain arteriolosclerosis appears relatively specific since there was no detected association between TDP-43 pathology and microinfarcts, lacunar infarcts, large infarcts, cerebral amyloid angiopathy (CAA), or circle of Willis atherosclerosis. Together, these observations provide support for the hypothesis that many aged brains are affected by a TDP-43 proteinopathy that is more likely to be seen in brains with AD pathology, arteriolosclerosis pathology, or both

    Role of sympathetic pathway in light-phase time-restricted feeding-induced blood pressure circadian rhythm alteration

    Get PDF
    Disruption of blood pressure (BP) circadian rhythm, independent of hypertension, is emerging as an index for future target organ damage and is associated with a higher risk of cardiovascular events. Previous studies showed that changing food availability time alters BP rhythm in several mammalian species. However, the underlying mechanisms remain largely unknown. To address this, the current study specifically investigates (1) the relationship between rhythms of food intake and BP in wild-type mice; (2) effects of light-phase time-restricted feeding (TRF, food only available during light-phase) on BP circadian rhythm in wild-type and diabetic db/db mice; (3) the roles of the autonomic system and clock gene in light-phase TRF induced changes in BP circadian rhythm. Food intake and BP of C57BL/6J and db/db mice were simultaneously and continuously recorded using BioDAQ and telemetry systems under ad libitum or light-phase TRF. Per2 protein daily oscillation was recorded in vivo by IVIS spectrum in mPer2Luc mice. Autonomic nerve activity was evaluated by heart rate variability, baroreflex, urinary norepinephrine (NE) and epinephrine (Epi) excretion, and mRNA expressions of catecholamines biosynthetic and catabolic enzymes, and alpha-adrenergic receptors in mesenteric resistance arteries. We found that in wild-type mice, the BP level was correlated with the food intake temporally across the 24 h. Reversing the feeding time by imposing light-phase TRF resulted in reverse or inverted BP dipping. Interestingly, the net changes in food intake were correlated with the net alteration in BP temporally under light-phase TRF. In db/db mice, light-phase TRF worsened the existing non-dipping BP. The food intake and BP circadian rhythm changes were associated with alterations in Per2 protein daily oscillation and the time-of-day variations in heart rate variability, baroreflex, and urinary excretion of NE and Epi, and increased mRNA expression of Slc6a2 (encoding NE transporter) and Adra1d (encoding alpha-adrenergic receptor 1d) in the mesenteric resistance arteries, indicating the sympathetic nervous system (SNS) was modulated after light-phase TRF. Collectively, our results demonstrated that light-phase TRF results in reverse dipping of BP in wild-type and diabetic db/db mice and revealed the potential role of the sympathetic pathway in light-phase TRF-induced BP circadian rhythm alteration

    Analysis of Genetic Variants Associated with Levels of Immune Modulating Proteins for Impact on Alzheimer’s Disease Risk Reveal a Potential Role for SIGLEC14

    Get PDF
    Genome-wide association studies (GWAS) have identified immune-related genes as risk factors for Alzheimer’s disease (AD), including TREM2 and CD33, frequently passing a stringent false-discovery rate. These genes either encode or signal through immunomodulatory tyrosine-phosphorylated inhibitory motifs (ITIMs) or activation motifs (ITAMs) and govern processes critical to AD pathology, such as inflammation and amyloid phagocytosis. To investigate whether additional ITIM and ITAM-containing family members may contribute to AD risk and be overlooked due to the stringent multiple testing in GWAS, we combined protein quantitative trait loci (pQTL) data from a recent plasma proteomics study with AD associations in a recent GWAS. We found that pQTLs for genes encoding ITIM/ITAM family members were more frequently associated with AD than those for non-ITIM/ITAM genes. Further testing of one family member, SIGLEC14 which encodes an ITAM, uncovered substantial copy number variations, identified an SNP as a proxy for gene deletion, and found that gene expression correlates significantly with gene deletion. We also found that SIGLEC14 deletion increases the expression of SIGLEC5, an ITIM. We conclude that many genes in this ITIM/ITAM family likely impact AD risk, and that complex genetics including copy number variation, opposing function of encoded proteins, and coupled gene expression may mask these AD risk associations at the genome-wide level

    Peripheral Inflammation, \u3cem\u3eApolipoprotein E4\u3c/em\u3e, and Amyloid-β Interact to Induce Cognitive and Cerebrovascular Dysfunction

    Get PDF
    Cerebrovascular dysfunction is rapidly reemerging as a major process of Alzheimer’s disease (AD). It is, therefore, crucial to delineate the roles of AD risk factors in cerebrovascular dysfunction. While apolipoprotein E4 (APOE4), Amyloid-β (Aβ), and peripheral inflammation independently induce cerebrovascular damage, their collective effects remain to be elucidated. The goal of this study was to determine the interactive effect of APOE4, Aβ, and chronic repeated peripheral inflammation on cerebrovascular and cognitive dysfunction in vivo. EFAD mice are a well-characterized mouse model that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce human Aβ42 via expression of 5 Familial Alzheimer’s disease (5xFAD) mutations. Here, we utilized EFAD carriers [5xFAD+/−/APOE+/+ (EFAD+)] and noncarriers [5xFAD−/−/APOE+/+ (EFAD−)] to compare the effects of peripheral inflammation in the presence or absence of human Aβ overproduction. Low-level, chronic repeated peripheral inflammation was induced in EFAD mice via systemic administration of lipopolysaccharide (LPS; 0.5 mg/kg/wk i.p.) from 4 to 6 months of age. In E4FAD+ mice, peripheral inflammation caused cognitive deficits and lowered post-synaptic protein levels. Importantly, cerebrovascular deficits were observed in LPS-challenged E4FAD+ mice, including cerebrovascular leakiness, lower vessel coverage, and cerebral amyloid angiopathy-like Aβ deposition. Thus, APOE4, Aβ, and peripheral inflammation interact to induce cerebrovascular damage and cognitive deficits

    Characteristics associated with willingness to participate in a randomized controlled behavioral clinical trial using home-based personal computers and a webcam

    Get PDF
    Abstract Background Trials aimed at preventing cognitive decline through cognitive stimulation among those with normal cognition or mild cognitive impairment are of significant importance in delaying the onset of dementia and reducing dementia prevalence. One challenge in these prevention trials is sample recruitment bias. Those willing to volunteer for these trials could be socially active, in relatively good health, and have high educational levels and cognitive function. These participants’ characteristics could reduce the generalizability of study results and, more importantly, mask trial effects. We developed a randomized controlled trial to examine whether conversation-based cognitive stimulation delivered through personal computers, a webcam and the internet would have a positive effect on cognitive function among older adults with normal cognition or mild cognitive impairment. To examine the selectivity of samples, we conducted a mass mail-in survey distribution among community-dwelling older adults, assessing factors associated with a willingness to participate in the trial. Methods Two thousand mail-in surveys were distributed to retirement communities in order to collect data on demographics, the nature and frequency of social activities, personal computer use and additional health-related variables, and interest in the prevention study. We also asked for their contact information if they were interested in being contacted as potential participants in the trial. Results Of 1,102 surveys returned (55.1% response rate), 983 surveys had complete data for all the variables of interest. Among them, 309 showed interest in the study and provided their contact information (operationally defined as the committed with interest group), 74 provided contact information without interest in the study (committed without interest group), 66 showed interest, but provided no contact information (interest only group), and 534 showed no interest and provided no contact information (no interest group). Compared with the no interest group, the committed with interest group were more likely to be personal computer users (odds ratio (OR) = 2.78), physically active (OR = 1.03) and had higher levels of loneliness (OR = 1.16). Conclusion Increasing potential participants’ familiarity with a personal computer and the internet before trial recruitment could increase participation rates and improve the generalizability of future studies of this type. Trial registration The trial was registered on 29 March 2012 at ClinicalTirals.gov (ID number NCT01571427 ).http://deepblue.lib.umich.edu/bitstream/2027.42/111291/1/13063_2013_Article_2385.pd

    Characteristics Associated with Willingness to Participate in a Randomized Controlled Behavioral Clinical Trial Using Home-Based Personal Computers and a Webcam

    Get PDF
    BACKGROUND: Trials aimed at preventing cognitive decline through cognitive stimulation among those with normal cognition or mild cognitive impairment are of significant importance in delaying the onset of dementia and reducing dementia prevalence. One challenge in these prevention trials is sample recruitment bias. Those willing to volunteer for these trials could be socially active, in relatively good health, and have high educational levels and cognitive function. These participants\u27 characteristics could reduce the generalizability of study results and, more importantly, mask trial effects. We developed a randomized controlled trial to examine whether conversation-based cognitive stimulation delivered through personal computers, a webcam and the internet would have a positive effect on cognitive function among older adults with normal cognition or mild cognitive impairment. To examine the selectivity of samples, we conducted a mass mail-in survey distribution among community-dwelling older adults, assessing factors associated with a willingness to participate in the trial. METHODS: Two thousand mail-in surveys were distributed to retirement communities in order to collect data on demographics, the nature and frequency of social activities, personal computer use and additional health-related variables, and interest in the prevention study. We also asked for their contact information if they were interested in being contacted as potential participants in the trial. RESULTS: Of 1,102 surveys returned (55.1% response rate), 983 surveys had complete data for all the variables of interest. Among them, 309 showed interest in the study and provided their contact information (operationally defined as the committed with interest group), 74 provided contact information without interest in the study (committed without interest group), 66 showed interest, but provided no contact information (interest only group), and 534 showed no interest and provided no contact information (no interest group). Compared with the no interest group, the committed with interest group were more likely to be personal computer users (odds ratio (OR) = 2.78), physically active (OR = 1.03) and had higher levels of loneliness (OR = 1.16). CONCLUSION: Increasing potential participants\u27 familiarity with a personal computer and the internet before trial recruitment could increase participation rates and improve the generalizability of future studies of this type. TRIAL REGISTRATION: The trial was registered on 29 March 2012 at ClinicalTirals.gov (ID number NCT01571427)
    corecore