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STATISTICAL ANALYSES TO DETECT AND REFINE GENETIC ASSOCIATIONS 

WITH NEURODEGENERATIVE DISEASES 

 

Dementia is a clinical state caused by neurodegeneration and characterized by a 

loss of function in cognitive domains and behavior. Alzheimer’s disease (AD) is the most 

common form of dementia. Although the amyloid β (Aβ) protein and 

hyperphosphorylated tau aggregates in the brain are considered to be the key pathological 

hallmarks of AD, the exact cause of AD is yet to be identified. In addition, clinical 

diagnoses of AD can be error prone. Many previous studies have compared the clinical 

diagnosis of AD against the gold standard of autopsy confirmation and shown substantial 

AD misdiagnosis Hippocampal sclerosis of aging (HS-Aging) is one type of dementia 

that is often clinically misdiagnosed as AD. AD and HS-Aging are controlled by different 

genetic architectures. Familial AD, which often occurs early in life, is linked to mainly 

mutations in three genes: APP, PSEN1, and PSEN2. Late-onset AD (LOAD) is strongly 

associated with the ε4 allele of apolipoprotein E (APOE) gene. In addition to the APOE 

gene, genome-wide association studies (GWAS) have identified several single nucleotide 

polymorphisms (SNPs) in or close to some genes associated with LOAD. On the other 

hand, GRN, TMEM106B, ABCC9, and KCNMB2 have been reported to harbor risk alleles 

associated with HS-Aging pathology. Although GWAS have succeeded in revealing 

numerous susceptibility variants for dementias, it is an ongoing challenge to identify 

functional loci and to understand how they contribute to dementia pathogenesis. 

 

Until recently, rare variants were not investigated comprehensively. GWAS rely 

on genotype imputation which is not reliable for rare variants. Therefore, imputed rare 

variants are typically removed from GWAS analysis. Recent advances in sequencing 

technologies enable accurate genotyping of rare variants, thus potentially improving our 

understanding the role of rare variants on disease. There are significant computational 

and statistical challenges for these sequencing studies. Traditional single variant-based 

association tests are underpowered to detect rare variant associations. Instead, more 

powerful and computationally efficient approaches for aggregating the effects of rare 

variants have become a standard approach for association testing. The sequence-kernel 

association test (SKAT) is one of the most powerful rare variant analysis methods. A 

recently-proposed scan-statistic-based test is another approach to detect the location of 

rare variant clusters influencing disease. 



 

In the first study, we examined the gene-based associations of the four putative 

risk genes, GRN, TMEM106B, ABCC9, and KCNMB2 with HS-aging pathology. We 

analyzed haplotype associations of a targeted ABCC9 region with HS-Aging pathology 

and with ABCC9 gene expression. In the second study, we elucidated the role of the non-

coding SNPs identified in the International Genomics of Alzheimer’s Project (IGAP) 

consortium GWAS within a systems genetics framework to understand the flow of 

biological information underlying AD. In the last study, we identified genetic regions 

which contain rare variants associated with AD using a scan-statistic-based approach. 

 

 

KEYWORDS:  Alzheimer’s Disease, Hippocampal Sclerosis of Aging,  

 Region-based Associations, Rare Variant Associations,  

 Systems Genetics 
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CHAPTER ONE 

Introduction 

Dementia is a clinical state caused by neurodegeneration and characterized by a loss of 

function in cognitive domains and undesirable changes in behavior. Alzheimer’s disease 

(AD) is the most common form of dementia, accounting for over 50% of dementia cases 

[1]. In the US, it has been estimated that 5.2 million people have AD and total payments 

from health-care and long-care services for AD patients are $214 billion in 2014 [2]. AD 

imposes a sever burden on patients themselves as well as caregivers and public health 

systems. Although it has been more than 100 years since Alois Alzheimer published 

“About a Peculiar Disease of the Cerebral Cortex” in 1907 [3], the exact cause of AD is 

yet to be identified. Amyloid β (Aβ) protein and hyperphosphorylated tau aggregates in 

the brain are considered to be the key pathological hallmarks in AD patients [4, 5]. A 

predominant mechanistic hypothesis for AD pathogenesis is the “amyloid cascade 

hypothesis” that suggests that AD is caused by lack of Aβ clearance, which triggers 

downstream neuronal injury such as synaptic and neuronal loss, enhanced 

neuroinflammation, tau hyperphosphorylation, and eventually the clinical symptoms of 

AD [6]. 

 

Aβ is a peptide of amino acids which is derived from amyloid precursor protein (APP) 

cleaved by β- and γ-secretases [7, 8]. The γ-secretase cleavage occurs at position 40 or 42 

of APP, yielding two major species of Aβ: Aβ40 (Aβ ending at residue 40) and Aβ42 (Aβ 

ending at residue 42) peptides [7]. Although Aβ40 is the most abundant form of Aβ, Aβ42 
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is less soluble and more neurotoxic than Aβ40 as it produces higher levels of Aβ 

oligomers [9, 10].  

 

In brains with AD, tau, a major neuronal microtubule-assembly-activator protein, is 

abnormally hyperphosphorylated in neurofibrillary tangles (NFTs). The function of tau is 

regulated by its degree of phosphorylation. Putatively, 85 phosphorylation sites have 

been identified at serine, threonine, and tyrosine residues [11, 12] with approximately 45 

specific sites identified for AD pathogenesis [13]. The abnormally hyperphosphorylated 

tau reduces the binding affinity to microtubules, binds to normal tau to form insoluble 

oligomers, and eventually develop NFTs which cause neurodegenerative diseases (called 

tauopathy) [14].  

 

HS-Aging 

The clinical diagnosis of AD is a challenging process that requires to remove other 

potential types of dementia. Many previous studies have compared the clinical diagnosis 

of AD against the gold standard of autopsy confirmation and shown substantial AD 

misdiagnosis [15-18]. The accurate diagnosis of AD is crucial to provide optimal 

treatments for patients as well as to recruit participants in clinical trials for new therapies. 

Hippocampal sclerosis of aging (HS-Aging) is one type of dementia that is often 

clinically misdiagnosed as AD [19-21]. Clinical signs and symptoms of HS-Aging are 

similar to those of AD with amnestic memory deficits [20, 21]. AD is characterized by 

the accumulation of amyloid plaques and neurofibrillary tangles [22], while HS-Aging is 

pathologically characterized by neuronal cell loss and gliosis in the hippocampus 
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unilaterally (~50%) or bilaterally [20, 23]. HS-Aging is generally diagnosed postmortem. 

The large majority of cases with HS-Aging show bilateral TAR DNA-binding protein 43 

(TDP-43) pathology in limbic structures [24, 25]. TDP-43 pathology had been considered 

to be a specific maker for frontotemporal lobar degeneration with ubiquitinated 

inclusions (FTLD-U). However, TDP-43 pathology is found in both HS-Aging and AD; 

in one study TDP-43 was detected in 71% of HS-Aging and 23% of AD cases [24]. There 

is no known treatment or preventive care for HS-Aging so far. Understanding its genetic 

architecture is important to reduce misdiagnosis with AD and to elucidate the aetiology 

of HS-Aging, yielding new insights into the molecular-based mechanisms of the 

underlying developmental process. 

 

Brief history of genetic risks of AD and HS-Aging 

Familial AD, which often occurs early in life, is linked mainly to mutations in three 

genes: APP and the presenilin proteins (PSEN1 and PSEN2) [8], which generally cause a 

shift in Aβ production from Aβ40 to less soluble and more neurotoxic Aβ42 (e.g., Volga 

German mutation in PSEN2 and Iberian mutation in APP) [26-29], an increased total Aβ 

levels (Swedish mutation in APP) [30], and an increased protofibril formation of Aβ 

(Arctic mutation in APP) [31]. On the other hand, late-onset AD (LOAD), which often 

occurs later in life and accounts for 95% of all AD cases [32], has more complex genetic 

architecture. The ε4 allele of apolipoprotein E (APOE) gene is the major genetic risk 

factor for LOAD. There are three apoE isoforms, apoE2 (cys112, cys158), apoE3 

(cys112, arg158), and apoE4 (arg112, arg158), determined by rs429358 (T/C) and rs7412 

(C/T) located on chromosome 19q13 (Table 1.1). The risk of AD is increased in 
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individuals with the ε4 allele: 2 to 3 times in those with one ε4 allele, and more than 12-

time in those with two ε4 alleles, whereas the ε2 allele has a protective effect: 0.6 times 

the odds compared to ε3/ ε3 carriers. These isoforms have different effects on Aβ 

metabolism, influencing age of onset of Aβ deposition. It is suggested that the binding 

ability of the apoE isoforms to Aβ follows the order of apoE2, apoE3, and apoE4, and 

therefore apoE2 and apoE3 inhibit the aggregation and enhance the clearance of Aβ 

compared to apoE4 [33]. The APOE alleles is also reported to be associated with tau 

levels in CSF [34, 35]. This association, however, has not been established as thoroughly 

as the association between APOE alleles and Aβ deposition [36].  

 

The microtubule-associated protein tau (MAPT) gene on chromosome 17q21, encoding 

tau and containing 16 exons, is also a candidate gene playing an important role in AD 

development. The tau primary transcript contains 13 exons without exons 4A, 6 and 8 in 

human brain. Exons 2, 3, and 10 are alternatively spliced, resulting in six different tau 

isoforms with the range from 352 to 441 amino acids. These isoforms differ by the 

presence of 0, 1, or 2 N-terminal inserts (0N = exons 2-3-; 1N = exons 2+3-; 2N = exons 

2+3+) and either three (3R) of four (4R) microtubule binding repeats located at the C 

terminus [37]. In the normal brain, the levels of 3R-tau and 4R-tau are approximately 

equal. The mutations in MAPT alter the balance by increasing the ratio of 4R to 3R, and 

disruption of the normal 4R to 3R ratio is associated with neurodegeneration by 

accelerating phosphorylation of tau. However, the ratio is approximately 1 in the AD 

brain with NFTs, and no mutations in MAPT have been found to be associated with AD 

so far. Instead, the MAPT haplotypes associated with AD have been found. Two 
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haplotypes exist in MAPT, directly oriented H1 and the inverted H2, which cover the 

entire MAPT gene. These haplotypes are tagged by a 238bp H1 insertion/H2 deletion 

polymorphism in intron 9 (del-In9). Many researchers reported that the H1 haplotype was 

associated with risk of LOAD [38-40]. Since the H1 and H2 haplotypes do not alter 

amino acid sequence, this pathogenic effect of the H1 haplotype may be due to 

differences in the gene expression rather than tau protein structure [38]. 

 

In addition to the APOE alleles and MAPT haplotypes, a series of genome-wide 

association studies (GWAS) have identified AD-associated single nucleotide 

polymorphisms (SNPs) in or close to genes that include CR1, BIN1, INPP5D, MEF2C, 

CD2AP, NME8, EPHA1, PTK2B, PICALM, SORL1, FERMT2, SLC24A4-RIN3, DSG2, 

CASS4, HLA-DRB5-DBR1, CLU, MS4A6A, ABCA7, CD33, ZCWPW1, and CELF1 

(Table 1.2) [41-45]. The report with the largest numbers of cases and controls was the 

International Genomics of Alzheimer’s Project (IGAP), a consortium to discover the 

genetic landscape of AD that included 74,046 individuals to show significant AD-

associations with 19 SNPs by meta-analyzing GWAS from four component consortia 

[41]. Although GWAS have succeeded in revealing numerous susceptibility SNPs for 

AD, it is an ongoing challenge to identify functional loci and to understand how they 

contribute to dementia pathogenesis. 

 

Unlike AD, the APOE ε4 allele is not a genetic risk factor for HS-Aging [19, 21, 25, 46, 

47]. The following four genes (in the chronological order they were so identified) have 

been reported to harbor risk alleles associated with HS-Aging pathology: GRN on 
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chromosome 17q, TMEM106B on chromosome 7p, ABCC9 on chromosome 12p, and 

KCNMB2 on chromosome 3q [21, 48-53]. The T-alleles of GRN rs5848 and TMEM106B 

rs1990622 were shown to have a risk of HS-Aging using an allele test, following the 

known relationship of those two genes to frontotemporal lobar degeneration with TDP-43 

inclusions (FTLD-TDP). The connections of the ABCC9 and KCNMB2 genes to HS-

Aging risk were discovered via GWAS. The association of ABCC9 SNP rs704180 with 

HS-Aging pathology was demonstrated using a recessive mode of inheritance (MOI) 

[51]. Beecham and colleagues reported the KCNMB2 SNP rs9637454 as the top SNP for 

HS pathology [48]. 

 

Genetic variants are located with much less frequency in coding regions than in non-

coding regions (about only 1% are within a protein-coding sequence) [54]. However, it is 

estimated that about 85% of the mutations with large effects on diseases are located in 

protein-coding functional regions [55]. To understand disease development mechanisms 

that underlie disease-associated genetic variants, identifying functional genes and/or 

variants is an important challenge. Functional variants may be located in 

nonsynonymous/synonymous coding regions, alternative splice region, and regulatory 

regions such as promoter, operator, insulator, enhancer and silencer. A nonsynonymous 

substitution includes a missense and nonsense mutations. The former alters the amino 

acid sequence of a protein, and the later introduces a premature termination codon 

resulting in a truncated protein. Many Mendelian diseases are due to nonsynonymous 

mutations causing deleterious amino acid substitutions. Synonymous mutation occurs in 

the coding region, but it does not change the amino acid sequence. These variants were 
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referred to as “silent mutation” until recently [56]. However, several synonymous 

mutations have been reported to affect mRNA splicing and stability, gene expression, and 

protein folding and function [56]. Other disease-associated genetic variants are located in 

the intronic and intergenic regions (i.e., non-coding regions) which may contain the 

regulatory or splice sites. They may have an important role in regulating expression level 

of disease-associated genes and modulating translation efficiency and stability [57].  

 

As shown in Table 1.2, all 21 variants identified in IGAP are non-coding. To elucidate 

the role of these SNPs, we hypothesized that each of the SNPs is: (1) a proxy of a coding 

variant or (2) a regulatory variant. One frequently used approach for the first hypothesis 

is to search coding variants in strong linkage disequilibrium (LD) with the variant 

identified by GWAS. LD is generally measured using the squared correlation coefficient 

(r2) between two variants, and the most widely used threshold is r2 ≥ 0.8. For the second 

hypothesis, expression quantitative trait locus (eQTL) analysis can be used. eQTL is a 

genetic locus that contributes to variation in gene expression. By mapping eQTL, we 

could investigate how the SNPs regulate gene expression.  

 

Rare variants and next-generation sequencing (NGS)  

Rare variants have become a focus in the recent past. Although GWAS have been 

successful in interrogating genetic variants for association with disease, GWAS are 

performed under the “common disease – common variant” hypothesis positing that 

common traits are caused by the combination of common variants with a small to 

moderate effect [58]. GWAS rely on genotyping preselected SNPs and imputing 
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ungenotyped variants based on local linkage disequilibrium (LD) of a set of some 

haplotypes from reference population. Imputation approaches have continually improved 

and are quite accurate for common variants [59, 60] but not as reliable for rare variants 

[61]. Therefore, imputed rare variants are typically removed from GWAS analysis.  

 

Recent advances in sequencing technologies have allowed to move toward 

comprehensive genome-wide approaches, enabling to accurately genotype rare variants 

generally defined as a variant with minor allele frequency (MAF) < 1-5%. These NGS 

technologies have the potential to improve our understanding the role of both common 

and rare variants in the underlying biological mechanisms of developing a disease. 

Whole-exome sequencing (WES) and whole-genome sequencing (WGS) are ideal 

approaches to identify novel variants and genes associated with complex traits. Most 

coding variants, however, are very rare, and thus an extremely large sample size is 

required to identify a single variant associated with a disease. There are significant 

computational and statistical challenges for these sequencing studies. Traditional single 

variant-based association tests, typically used for analysis of common variants, are 

underpowered to detect rare variants unless sample size and/or effect size is very large 

[62]. The disease-variant associations may be less accurate if computed by standard 

regression method for evaluating the effect. Instead of testing single variant individually, 

more powerful and computationally efficient approaches by aggregating the effects of 

rare variants have become a standard approach for association testing. 
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Many such approaches for testing association between rare variants within a pre-specified 

region and a disease have been proposed. Sequence-kernel association test (SKAT) is one 

of the most powerful rare variants analysis methods [63, 64]. The SKAT aggregates score 

test statistics. It is powerful when both risk and protective variants are mixed and when a 

small proportion of variants are causal [63]. Instead of summing up the square of 

weighted score test statistics, burden test treats the square of the sum of weighed score 

test statistics. The burden test is more powerful than SKAT when most of the variants are 

causal and have the same direction of effect [63].  

 

A recently-proposed scan-statistic-based test is another approach to detect the location of 

rare variant clusters influencing disease. Scan-statistic-based test was introduced into 

human genetics by Hoh et al [65] to locate susceptibility genes. Ionita-Laza et al. adapted 

this test to identify clusters of rare risk variants based on a likelihood ratio under a 

Bernoulli model proposed by Kulldorff [66] for disease association [67]. Variants within 

a functional protein-coding domain may be located in close proximity and may play a 

similar role in genetic mechanisms of a disease. Unlike association tests or other cluster 

detection analyses, the scan-statistic-based test can both detect the location of clusters 

and examine the association under the null hypothesis that probability of being a risk 

variant within a certain scan window equals to that outside the window. This approach is 

powerful when the disease risk variants significantly make a cluster in the window.  
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Dissertation Outline 

This dissertation work presents studies on gene-based association of genes with 

hippocampal sclerosis of aging, translation of AD-associated polymorphisms into 

functional candidates, and genetic regions containing rare variants associated with AD 

identified by scan statistic-based approach.In Chapter two, gene-based association tests of 

GRN, TMEM106B, ABCC9, and KCNMB2 and haplotype-based test of ABCC9 were 

performed. The major findings from this study were that the significant gene-based 

association between the ABCC9 gene and HS-Aging appeared to be driven by a region 

with a significant haplotype-based association. In addition, the haplotype of ABCC9 was 

associated with decreased ABCC9 expression. In Chapter three, the role of the non-

coding SNPs identified in the IGAP consortium GWAS were elucidated within a systems 

genetics framework. Systems genetics is a global approach to understand how genetic 

information flows from DNA to transcripts, proteins, metabolites, and ultimately 

diseases. Focusing on a causal relationship model in which SNP affects phenotype 

through mRNA, each IGAP SNP was evaluated whether it is a proxy of a coding variant 

or whether it is a regulatory variant. In Chapter four, genetic regions which contained risk 

or protective rare variants associated with AD were identified using a scan-statistic-based 

approach. The scan statistics with different settings were evaluated in TREM2 and 

TOMM40 as highly-replicated positive controls. Very similar scan statistic values were 

obtained when we specified the whole genome and chromosome as a large genetic 

region. The optimized window approach captured almost the entire gene in TREM2 and 

the single variant in TOMM40 as a meaningful cluster. Applying the optimized window 

approach across the genome, clusters harboring risk or protective variants for AD were 
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detected including within MUC6, NXNL1, and BCAM. The conclusion of the dissertation 

and future research interests are discussed in Chapter Five.  
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Table1.1. APOE isoforms encoded by two single nucleotide polymorphisms 

 rs429358  rs7412 

 Codon Amino acid  Codon Amino acid 

apoE2 TGC Cysteine  TGC Cysteine 

apoE3 TGC Cysteine  CGC Arginine 

apoE4 CGC Arginine  CGC Arginine 

A bold letter represents a nucleotide of each polymorphism 
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Table1.2. Single nucleotide polymorphisms for Alzheimer’s Disease identified in the previous studies 

Gene Chr SNP Position Annotation 
1000 Genomes 

References 
MAF r2 D’ 

CR1 1 rs6656401 207,692,049 Intron 0.17   [41, 43] 

  rs3818361 207,784,968 Intron 0.18 0.83 0.94 [42, 45] 

  rs6701713 207,786,289 Intron 0.18 0.83 0.94 [44, 45, 68] 

  rs1408077 207,804,141 Intron 0.18 0.83 0.93 [45, 69] 

BIN1 2 rs6733839 127,892,810 
Regulatory region 

variant 
0.38   [41] 

  rs744373 12,789,4615 Intergenic variant 0.27 0.49 0.90 [42, 45, 70] 

  rs7561528 127,889,637 Intergenic variant 0.31 0.35 0.69 [44, 45, 69] 

INPP5D 2 rs35349669 234,068,476 Intron 0.46   [41] 

MEF2C 5 rs190982 88,223,420 Intron 0.37   [41] 

HLA-DRB5-

DBR1 
6 rs9271192 32,578,530 Intergenic variant 0.26   [41] 

CD2AP 6 rs10948363 47,487,762 Intron 0.25   [41] 

  rs9296559 47,452,270 Intron 0.25 1 1 [42] 

  rs9349407 47,453,378 Intron 0.25 1 1 [42, 44, 68] 

NME8 7 rs2718058 37,841,534 Intron 0.37   [41] 

ZCWPW1 7 rs1476679 100,004,446 Intron 0.30   [41] 

EPHA1 7 rs11771145 143,110,762 Intron 0.36   [41] 

  rs11767557 143,109,139 Intron 0.22 0.25 0.71 [42, 44] 

PTK2B 8 rs28834970 27,195,121 Intron 0.34   [41] 

A bold SNP ID represents the SNP identified the International Genomics of Alzheimer’s Project reported by Lambert et al [41]. 

Chr = chromosome; SNP = single nucleotide polymorphism; 1000 Genomes = 1000 Genomes Project Phase 3 in individuals of 

European ancestry; MAF = minor allele frequency  
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Table1.2. (Continued) 

Gene Chr SNP Position Annotation 
1000 Genomes 

References 
MAF r2 D’ 

CLU 8 rs9331896 27,467,686 Intron 0.40   [41] 

  rs11136000 27,464,519 Intron 0.39 0.91 0.97 [43, 45] 

  rs9331888 27,468,862 5 prime UTR 0.30 0.28 1 [43, 71] 

  rs2279590 27,456,253 
Non coding 

transcript exon 
0.41 0.83 0.93 [43] 

  rs7982 27,462,481 Missense 0.39 0.90 0.97  

  rs7012010 27,448,729 
Downstream gene 

variant 
0.28 0.18 0.83  

  rs1532278 27,466,315 

Non coding 

transcript exon 

variant 

0.39 0.91 0.97 [44] 

CELF1 11 rs10838725 47,557,871 Intron 0.28   [41] 

  rs1057233 47,376,448 3 prime UTR variant 0.32 0.17 0.97 [72] 

MS4A 11 rs983392 59,923,508 
Downstream 

intergenic 
0.41   [41] 

  rs670139 59,971,795 Intron 0.40 0.44 0.97 [42, 44] 

  rs4938933 60,034,429 Intergenic 0.40 0.70 0.85 [44] 

  rs610932 59,939,307 3 prime UTR variant 0.44 0.72 0.89 [42, 45] 

  rs662196 59,942,757 Intron 0.44 0.69 0.88 [45] 

  rs583791 59,947,252 Missense 0.48 0.68 0.87 [45] 

A bold SNP ID represents the SNP identified the International Genomics of Alzheimer’s Project reported by Lambert et al [41]. 

Chr = chromosome; SNP = single nucleotide polymorphism; 1000 Genomes = 1000 Genomes Project Phase 3 in individuals of 

European ancestry; MAF = minor allele frequency 
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Table1.2. (Continued) 

Gene Chr SNP Position Annotation 
1000 Genomes 

References 
MAF r2 D’ 

PICALM 11 rs10792832 85,867,875 
Downstream 

intergenic 
0.37   [41] 

  rs3851179 85,868,640 
Downstream gene 

variant 
0.37 0.99 0.99 [45, 73] 

  rs541458 85,788,351 Intergenic 0.32 0.64 0.90 [43] 

  rs561655 85,800,279 
Upstream gene 

variant 
0.35 0.77 0.92 [44] 

SORL1 11 rs11218343 121,435,587 Intron 0.043   [41] 

FERMT2 14 rs17125944 53,400,629 Intron 0.081   [41] 

SLC24A4-

RIN3 
14 rs10498633 92,926,952 Intron 0.22   [41] 

DSG2 18 rs8093731 29,088,958 Intron 0.012   [41] 

ABCA7 19 rs4147929 1,063,443 Intron 0.19   [41] 

  rs3764650 1,046,520 Intron 0.11 0.77 0.92 [42, 68] 

  rs72973581 1,043,103 Missense 0.053 0.012 1 [74] 

CD33 19 rs3865444 51,727,962 
Upstream gene 

variant 
0.31   [41, 42, 44] 

  rs3826656 51,726,613 
Upstream gene 

variant 
0.22 0.13 1  

  rs12459419 51,728,477 Missense 0.31 1 1  

CASS4 20 rs7274581 55,018,260 Intron 0.080   [41] 

A bld SNP ID represents the SNP identified the International Genomics of Alzheimer’s Project reported by Lambert et al [41]. 

Chr = chromosome; SNP = single nucleotide polymorphism; 1000 Genomes = 1000 Genomes Project Phase 3 in individuals of 

European ancestry; MAF = minor allele frequency 

 



 

16 

 

CHAPTER TWO 

Gene-based association study of genes linked to hippocampal sclerosis of aging 

neuropathology: GRN, TMEM106B, ABCC9, and KCNMB2 

 

Abstract  

Hippocampal sclerosis of aging (HS-Aging) is a common neurodegenerative condition 

associated with dementia. To learn more about genetic risk of HS-Aging pathology, we 

tested gene-based associations of the GRN, TMEM106B, ABCC9, and KCNMB2 genes, 

which were reported to be associated with HS-Aging pathology in previous studies. 

Genetic data were obtained from the Alzheimer’s Disease Genetics Consortium (ADGC), 

linked to autopsy-derived neuropathological outcomes from the National Alzheimer’s 

Coordinating Center (NACC). Of the 3,251 subjects included in the study, 271 (8.3%) 

were identified as an HS-Aging case. The significant gene-based association between the 

ABCC9 gene and HS-Aging appeared to be driven by a region in which a significant 

haplotype-based association was found. We tested this haplotype as an expression 

Quantitative Trait Locus (eQTL) using two different public-access brain gene expression 

databases. The HS-Aging pathology protective ABCC9 haplotype was associated with 

decreased ABCC9 expression, indicating a possible toxic gain of function.  

 

Introduction 

Hippocampal sclerosis of aging (HS-Aging) is a high-morbidity brain disease in people 

of advanced age [75]. The prevalence of HS-Aging pathology ranges from 5 to 30% in 

older people in large autopsy series [23, 47, 76, 77]. Clinical signs and symptoms of HS-
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Aging are similar to those of Alzheimer’s disease (AD) with amnestic memory deficits 

[20, 21]. Because of the overlapping symptomology, HS-Aging is often clinically 

misdiagnosed as AD [19-21]. AD is characterized by the accumulation of amyloid 

plaques and neurofibrillary tangles [22], while HS-Aging is pathologically characterized 

by neuronal cell loss and gliosis in the hippocampus seen by hematoxylin and eosin 

(H&E) stain, which can occur unilaterally (~50%) or bilaterally [20, 23]. Whatever the 

laterality on H&E stain, the large majority of cases with HS-Aging show bilateral TAR 

DNA-binding protein 43 (TDP-43) pathology in limbic structures [24, 25]. Awareness of 

this common cause of dementia is rapidly increasing, and we recently recommended a 

revision of the terminology for describing this disease to cerebral age-related TDP-43 

with sclerosis (CARTS) [78]. However, here we will maintain use of the term HS-Aging 

because the neuropathologic databases we assessed did not include TDP-43 pathologic 

information until quite recently. 

 

Genetic risk factors for HS-Aging have been recently identified. Unlike AD, the 

apolipoprotein E (APOE) ε4 allele is not a risk factor for HS-Aging [19, 21, 25, 46, 47]. 

By contrast, the following four genes (in the chronological order they were so identified) 

have been reported to harbor risk alleles associated with HS-Aging pathology: Granulin 

(GRN) on chromosome 17q, Transmembrane protein 106B (TMEM106B) on 

chromosome 7p, ATP-binding cassette sub-family member 9 (ABCC9) on chromosome 

12p, and potassium channel subfamily M regulatory beta subunit 2 (KCNMB2) on 

chromosome 3q [21, 48-53].  
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Alleles near the coding portions of the GRN and TMEM106B genes were shown to have 

an association with HS-Aging using an allele test, following the known relationship of 

those two genes to frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-

TDP). Specifically, HS-Aging pathology was associated with the T-allele of the GRN 

single nucleotide polymorphism (SNP) rs5848 [49, 53, 79, 80]. For the other FTLD-

related gene, TMEM106B, persons with eventual autopsy-proven HS-Aging pathology 

were more likely to have the T-allele than controls [50, 53, 81]. We confirmed an 

increase in HS-Aging odds for each copy of the T-allele of TMEM106B rs1990622 [51].  

 

The connections of the ABCC9 and KCNMB2 genes to HS-Aging risk were discovered 

via genome-wide association studies (GWAS), which are neither helped nor biased by 

prior mechanistic hypotheses. The association of ABCC9 SNP rs704178 with HS-Aging 

pathology was demonstrated in a GWAS using a recessive mode of inheritance (MOI) 

[51]. The relationship of this locus with HS-Aging was subsequently tested in a different 

group of research subjects, and the association was replicated [52]. Beecham and 

colleagues reported the KCNMB2 SNP rs9637454 as the top SNP for HS pathology, 

although this association was not genome wide significant [48], and has not been 

replicated to date. 

 

In the present study, we examined the associations of these four putative risk SNPs with 

HS-aging pathology, using genetic data obtained from Alzheimer’s Disease Genetics 

Consortium (ADGC) linked to neuropathological outcomes from the National 

Alzheimer’s Coordinating Center (NACC) [51, 52]. Here we aggregated those data sets 
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to attain greater statistical power for gene-wide association analyses, for the purpose of 

understanding better the association of multiple (often co-inherited) gene variants with 

disease development. Thus, we tested GRN, TMEM106B, ABCC9, and KCNMB2 for 

gene-based associations with HS-Aging pathology by aggregating SNPs and indels (small 

insertions or deletions) on each of those genes. In addition, we focused on the interesting 

region located around intronic SNP rs704178 on the ABCC9 gene that was identified in 

the previous work, and analyzed haplotype associations of the region with HS-Aging 

pathology and ABCC9 gene expression.  

 

Material and methods 

Study subjects 

ADGC genotype data were linked to data from the National Institute on Aging (NIA)-

funded 36 AD Centers (ADCs) and NACC registry phenotype information. Of 3,730 

subjects with both genotype and autopsy information available to us, those who died at 

age 60 years or older were included in this study. Cases of HS-Aging were identified as 

patients who met at least one of the following criteria at autopsy; 1) the primary 

pathologic diagnosis was hippocampal sclerosis, 2) there was a contributing pathologic 

diagnosis of hippocampal sclerosis, or 3) medial temporal lobe sclerosis was present at 

autopsy. We then excluded 180 individuals who had FTLD with ubiquitin-positive 

inclusions, FTLD with no distinctive histopathology, FTLD-tau, or prion associated 

disease (Figure 2.1). 
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Quality control of the ADGC genotype data 

Standard quality control (QC) procedures were performed on the ADGC genotype data 

using PLINK v1.90a [82]. Markers were excluded based on the following criteria: (1) 

minor allele frequency (MAF) < 1%; (2) call rate per variant (SNPs and indels) < 95%, 

(3) Hardy-Weinberg equilibrium test in controls < 10−5. (Table 2.1). Samples were 

excluded based on the following criteria: (1) call rate per individual < 95%, (2) a high 

degree of relatedness per an estimated proportion of identical by descent (IBD) > 0.1875, 

(3) excess of ± 3.0 standard deviations of heterozygosity rate. Of the 3,407 individuals 

after the inclusion and exclusion criteria were applied, 3,330 passed the QC (Figure 2.1). 

 

Identifying ethnic outliers 

We performed principal component analysis (PCA) in EIGENSTRAT [83] using a 

linkage disequilibrium (LD) pruned subset of markers (pairwise r2 < 0.2) from our data 

merged to 1000 Genomes Project Phase 3 (1000 Genomes) [84] data after removing 

symmetric SNPs and flipping SNPs discordant for DNA strands between the two 

datasets. We then plotted the first and second principal components (PCs) for each 

individuals (n = 5,834: 2,504 from 1000 Genomes and 3,330 from the study) using the 

ggplot2 R package (version 2.2.0) [85] in R (version 3.2; http://www.r-project.org). 

Based on the PC plot, 79 study subjects were removed as ethnic outliers (Figure 2.1 and 

Figure 2.2). We reran the PCA for the remaining 3,251 European ancestries to derive 

orthogonal PCs which were used as covariates in the subsequent analyses. 
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Statistical analysis 

Gene-based association analysis 

Prior to gene-based association analyses, we performed the single variant association 

testing using logistic regression assuming each of the three most commonly used MOI 

(additive, dominant, and recessive) adjusted for age at death, sex and the top three PCs 

using PLINK v1.90a [82]. Gene-based association analyses were conducted using 

GATES (Gene-Based Association Test Using Extended Simes Procedure) [86] as 

implemented in the open-source software Knowledge-Based Mining System for Genome-

wide Genetic Studies (KGG; version 3.5) [86]. GATES is a gene-based association test 

that combines the p-values of variants within a gene obtained from single variant 

association testing described above. We assigned variants to genes based on their 

physical positions at the UCSC Genome Browser GRCh37/hg19 human assembly 

(https://genome.ucsc.edu/) [87], and defined gene boundaries as ± 5kb from 5’ and 3’ 

untranslated regions (UTRs). This gene-based association test adjusts for LD in European 

super population genotype data from the 1000 Genomes (1000 Genomes EUR) [84]. The 

input data files to KGG contained four columns: chromosome number, marker ID, 

marker position, and single variant association p-value. We then obtained overall p-

values for the associations of the target genes. Since those who live to advanced old age 

have a higher risk of HS-Aging pathology [25, 88], there is a possibility that those who 

died earlier would be always identified as a control even if they have a genetic risk. 

Therefore, for sensitivity analysis against these possible misclassifications, we further 

performed these gene-based association tests in cases and controls who died at age 80 

years or older. For the gene-based association test, statistical significance level was 
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defined using the Bonferroni correction, yielding α = 0.05/(4 genes ×3 MOI ×2 age 

groups) = 0.0021 for the four examined genes and three MOI.  

 

Haplotype-based association analysis for HS-Aging 

After identifying the HS-Aging risk-associated region on the ABCC9 gene by generating 

a regional association plot using LocusZoom software [89], we performed additional post 

hoc haplotype analysis for the variants on the region. First, we selected tag variants using 

a pairwise SNP tagging approach with r2 ≥ 0.8 based on the 1000 Genomes EUR in 

Haploview version 4.2 [90]. Maximum likelihood estimates of haplotype frequencies 

were computed using an expectation-maximization (EM) algorithm implemented in the 

functions haplo.em (for overall subjects) and haplo.group (for HS-Aging cases and 

controls) of the haplo.stats R package (version 1.7.7) [91] using R (version 3.2; 

http://www.r-project.org). The associations between common haplotypes (the estimated 

frequencies greater than 1% in entire subjects) and HS-Aging status assuming a recessive 

MOI were then tested with a haplotype score test adjusted for age at death, sex, and the 

top three PCs [92] implemented in the function haplo.score. The global and haplotype-

specific empirical p-values were obtained via 107 Monte-Carlo simulations. 

 

Haplotype-based expression Quantitative Trait Locus (eQTL) analysis for ABCC9 gene 

expression 

We examined the association of the haplotypes with ABCC9 gene expression, focusing 

on the haplotypes that were identified in association analysis for HS-Aging pathology. 

We retrieved ABCC9 gene expression values in human brain and genotype data from two 
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independent datasets: North American Brain Expression Consortium (NABEC) [93] and 

United Kingdom Brain Expression Consortium (UKBEC) [94].  

 

In the NABEC dataset, the expression data were available at Gene Expression Omnibus 

(GEO) public repository (http://www.ncbi.nlm.nih.gov/geo/) under the GEO accession 

GSE36192, consisting of two brain regions (cerebellum and frontal cortex) from 228 

neurologically normal donors. The genotype data were obtained from the database of 

Genotypes and Phenotypes (dbGaP: http://www.ncbi.nlm.nih.gov/gap) under the dbGaP 

study accession phs000249.v2.p1. After the QC procedure with the same settings as we 

did for the ADGC genotype data was applied, the genotype data were imputed using 

Michigan Imputation Server (https://imputationserver.sph.umich.edu/start.html) [95] with 

the following parameters: 1000 Genome Phase 3 v5 reference panel, Eagle v2.3 phasing 

[96], and EUR population. The imputed genotype with posterior probabilities < 0.9 were 

labeled as missing. Among the 228 NABEC subjects, 130 who died at age 30 years or 

older and passed the QC were included in the analysis (all of them were US Caucasians).  

 

In the UKBEC dataset, gene expression for ten brain regions (cerebellar cortex, frontal 

cortex, hippocampus, medulla, occipital cortex, putamen, substantia nigra, thalamus, 

temporal cortex, and white matter) and genotype data from 134 “neuropathologically 

normal” individuals were obtained at BRAINEAC website (http://www.braineac.org/). 

The dosage files downloaded from the website (accessed 6/28/2016) were converted into 

PLINK file format using Genome-wide Complex Trait Analysis (GCTA) software 

version 1.24.4 [97]. The haplotype-based association analyses on ABCC9 gene 
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expression were performed for the five haplotypes that were identified in the haplotype-

based association analysis for HS-Aging assuming an additive MOI.  

 

The analyses were carried out separately in the two datasets. We focused on ABCC9 gene 

expression through Illumina probe ID ILMN_1751453 in frontal cortex of the NABEC 

and through Affymetrix transcript ID t3446919 in the average of all ten regions of the 

UKBEC dataset. Expression data were quantile normalized and log2-transformed.  

 

Results 

Of the 3,251 included subjects from ADGC/NACC, 271 (8.3%) met at least one of the 

HS-Aging case criteria. Figure 2.3 shows the proportion of participants with HS-Aging 

pathology increased with age at death, from 3.1% (95% confidence interval (CI) is 1.6 to 

5.4%) in those aged less than 70 years to 15.7% (95% CI is 12.8 to 19.0%) in those aged 

90 years or older. The mean age at death in the cases was significantly higher than that in 

the controls (84.8 ± 8.4 years in the cases and 80.5 ± 8.8 years in the controls). No 

statistically significant differences were noted by case status and sex, APOE ε4 and 

microtubule-associated protein tau (MAPT) haplotype (H1 haplotype tagging rs8070723 

A-allele and H2 tagging G-allele) frequencies (Table 2.2). 

 

Single variant-based association 

Table 2.3 shows the most associated variants on each of the four genes defined gene 

boundaries as ± 5kb from 5’ and 3’ UTRs. The highest association signals came from 

SNPs on the ABCC9 gene (rs7966849; p = 7.1 × 10-6 with an assumed recessive MOI and 
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p = 4.4 × 10-5 with an assumed additive MOI) and on the KCNMB2 gene (rs73183328; p 

= 8.2 × 10-5 with an assumed additive MOI and p = 1.6 × 10-4 with an assumed dominant 

MOI). There was a series of small signals in high LD with the top SNP on the 

TMEM106B gene, and there was an associated region with small effects in low-to-

moderate LD with the top SNP on the ABCC9 gene.  

 

Gene-based association 

In the gene-based association analyses, 20, 222, 259 and 939 variants were mapped to the 

GRN, TMEM106B, ABCC9 and KCNMB2 genes, respectively. Table 2.4 shows the 

results of the gene-based association test in people aged 60 years. The ABCC9 gene had a 

significant gene-based association with HS-Aging assuming a recessive MOI when 

applying the Bonferroni correction (p = 2.4 × 10-4). There were nominally significant 

gene-based associations for the GRN gene assuming a recessive MOI, the TMEM106B 

gene assuming a recessive and an additive MOI, the ABCC9 gene assuming an additive 

MOI, and the KCNMB2 gene assuming an additive and a dominant MOI. For sensitivity 

analysis in people aged 80 years or older (n = 1,883: 203 in HS-Aging cases and 1,680 in 

controls), we confirmed the same results that the ABCC9 gene had a significant gene-

based association with HS-Aging assuming a recessive MOI (p = 0.0017) (Table 2.5).  

 

Haplotype-based association with HS-Aging 

The single-variant-based association plots (Figure 2.4) imply that the significant gene-

based association of the ABCC9 gene is driven by the region in which the most 

significant variants were located on the position 21,982,262 - 22,015,114 (all 
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chromosomal positions we describe are referent to human assembly GRCh37/hg19). The 

top SNP (rs7966849) in this study is in high LD with rs704180 (r2 = 0.926) which was 

identified as the predominant risk SNP of HS-Aging [51, 52]. Assuming a recessive MOI, 

there were 33 variants (30 SNPs and 3 indels) associated with HS-Aging pathology (each 

with p < 1.0 × 10-3) in this region, all of which are intronic. We selected four tag SNPs 

between exon 18 and 29 (Figure 2.4) of the ABCC9 gene when assuming a recessive 

MOI. The most frequent haplotypes were “Hap1” T-A-G-T (from 5’ to 3’) estimated to 

be present in 40.1% of observed chromosomes (32.1% in cases and 40.8% in controls), 

and “Hap2” C-C-A-C (36.8%; 43.7% in cases and 36.2% in controls). Hap1 was 

significantly associated with a lower risk of HS-Aging (score statistic = -2.747 and p = 

0.0061) and Hap2 with a higher risk of HS-Aging (score statistic = 4.277 and p = 3.3 × 

10-5). 

 

Haplotype-based expression Quantitative Trait Locus (eQTL) association with ABCC9 

gene expression 

In haplotype-based association tests assuming an additive MOI, Hap1 was significantly 

associated with ABCC9 gene expression in both datasets (p = 0.0026 in the NABEC and 

p = 0.024 in the UKBEC). Compared with the association with rs704180 only, Hap1 had 

a stronger association with ABCC9 gene expression in the NABEC (Table 2.6). 

  

Discussion 

In the large autopsy dataset derived from multiple research centers, we evaluated the 

genetic associations of four candidate genes (GRN, TMEM106B, ABCC9, and KCNMB2) 
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for HS-Aging pathology. We found significant gene- and haplotype-based associations of 

the ABCC9 gene with HS-Aging, and these approaches provide new insights into the 

other candidate genes and variants that are associated with HS-Aging. The haplotype 

made up of the risk alleles at the region (Hap2: C-C-A-C) was significantly 

overrepresented in HS-Aging cases, and thus could be a risk haplotype, while the 

opposite haplotype (Hap1: T-A-G-T) was significantly overrepresented in controls, and 

thus could be a protective risk factor. We further revealed that the protective haplotype 

(i.e., Hap1) was associated with down-regulation of ABCC9 gene expression, and the 

results were consistent in two independent datasets.  

 

Unlike the TMEM106B and GRN genes, the association between the ABCC9 gene and 

FTLD-TDP has never been reported. That is, the ABCC9 gene could potentially be a key 

gene on the distinction between FTLD-TDP and HS-Aging pathogenesis. The ABCC9 

gene encodes a transmembrane protein, a part of an ATP-sensitive potassium (KATP) 

channel complex. KATP channel consists of two distinct subunits: an inwardly rectifying 

K+ channel (Kir6.x) and a regulatory sulfonylurea receptor (SURx) [98]. When the ATP 

levels drop due to hypoxia/ischemia or other stressor, vascular smooth muscle cell KATP 

channels open to increase K+ efflux, voltage-activated calcium channels close to block 

Ca2+ entry, and in turn, vasodilatation is induced [99, 100]. Given the critical roles in 

regulation of vascular tone, KATP channel dysfunction may be involved in cardio- and 

cerebrovascular diseases. In mouse experiments, knock-out Kir6.1 (encoded immediately 

downstream from ABCC9 on chromosome 12) and Abcc9 led to hypertension, coronary 

artery vasospasm, and sudden cardiac death [101, 102]. In addition, Leverenz and 
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colleagues found in their community-based study that HS-Aging cases were more likely 

to have history of stroke, small vessel disease, and hypertension than AD cases [47]. Our 

group also reported that brains with HS-Aging pathology tended to have 

arteriolosclerosis in multiple cortical and subcortical regions [103]. We note that known 

mutations in the human ABCC9 gene lead to a toxic gain of function (“Cantu syndrome”) 

also are associated with human cerebrovascular pathology - a phenotype of “tortuous 

cerebral vessels” detected on neuroimaging [104]. These prior studies imply that 

cerebrovascular factors might be involved in developing HS-Aging via the KATP channel-

dependent activity [105]. In addition, we recently reported that human brain gene 

expressions that are triiodothyronine (T3) responsive were correlated with the ABCC9 

gene expression, and total T3 levels in cerebrospinal fluid (CSF) were significantly 

higher in HS-Aging cases than in controls [106]. Prior studies showed links between 

thyroid hormone (TH) levels and dementia [107-109], as well as TH levels and vascular 

diseases [110-112]. Therefore it is possible that the ABCC9 gene variants may help 

mediate links between TH dysregulation, cerebrovascular disease, and HS-Aging 

pathology.  

 

The TMEM106B gene did not have a significant gene-based association with HS-Aging 

when applying the Bonferroni correction, but nominal significance was found assuming a 

recessive and an additive MOI. Van Deerlin and colleagues identified rs1990622 T-allele 

as a risk factor for FTLD with TDP inclusions (FTLD-TDP) [113]. Here we report that 

rs3823612, which is in strong LD with rs1990622 (r2 = 0.975), is the variant on the 

TMEM106B gene that is most strongly associated with risk for HS-Aging pathology 
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assuming a recessive and an additive MOI. However, there are 108 gene variants (96 

SNPs and 12 indels) in near perfect LD with the top SNP rs3823612 over the gene (the 

range of r2 was from 0.930 to 0.996). Of the 108 variants, rs3173615 is a missense variant 

on exon 6, rs6460901 is a splice region variant, rs2302634 and rs2302633 are non-coding 

transcript exon variants, 19 variants are 5’ or 3’ UTR variants, 10 variants are upstream 

or downstream gene variants, and the remaining variants are intronic. Yu and colleagues 

reported that rs1990622 A-allele was associated with more advanced TDP-43 pathology 

which is the dominant feature of HS-Aging [114]. TDP-43 is also a major disease protein 

of other neurodegenerative diseases including FTLD and amyotrophic lateral sclerosis 

(ALS) [115]. Nicholson and colleagues showed that rs3173615 (missense variant on exon 

6), dictating the amino acid at codon 185 of threonine (ACC: T185) or serine (AGC: 

S185), was associated with higher TMEM106B protein levels in GRN mutation carriers 

[116]. Aberrant TDP-43 immunoreactivity is seen in both HS-Aging and FTLD-TDP, 

and rs1990622 A-allele is reported to be a risk allele of both HS-Aging and FTLD-TDP. 

However, these two diseases differ in clinical symptoms and pathological characteristics 

[25, 117]. 

 

The SNP on the KCNMB2 gene that was identified as a possible risk factor is rs9637454 

[48], while in the current study we found that rs73183328 was the most strongly 

associated variant assuming an additive and a dominant MOI. Nominally significant 

gene-based association of the KCNMB2 gene with HS-Aging were found assuming an 

additive and a dominant MOI, although the gene-based associations were not significant 

when applying the Bonferroni correction. The KCNMB2 protein is the transmembrane β2 
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subunit of the large-conductance Ca2+- and voltage-activated K+ (BK) channel. The 

channel is formed by pore-forming α-subunit encoded on the KCNMA1 gene 

(chromosome 10) and four β-subunits (β1 to β4) [118]. The β2 subunit induces the BK 

channel inactivation with the coexpressed α-subunit leading to neuronal excitability by 

inhibiting K+ currents [119]. Since inactivating BK channels are found in CA1 

hippocampal neurons [120], HS-Aging may be related to the KCNMB2 gene via a process 

involving BK channel activation. It seems remarkable that both GWAS-identified 

putative HS-Aging risk genes (ABCC9 and KCNMB2) encode proteins that modify 

potassium channels. 

 

There are limitations in this study. Since NACC data are derived from ADCs, the study 

design is not population-based. Also, HS pathologic diagnoses vary across calendar time 

and ADCs. Thus, there was probably some misclassification of HS-Aging diagnosis. 

However, neuropathologic evaluation is the gold standard for HS diagnosis, and thus the 

problem of misclassification, while ever-present, was minimized as much as possible. We 

did not obtain dense genetic information on the GRN gene. The previously identified SNP 

rs5848 as a HS-Aging risk SNP was removed in the process of the QC due to high 

missing rate. Therefore, we could not evaluate the GRN gene well in this study.  

 

In summary, we confirmed that the ABCC9 gene had the significant gene-based 

association with HS-Aging when assuming a recessive MOI. The significant gene-based 

association of the ABCC9 gene is driven by the region in which a significant haplotype-

based association was found. Although we did not find statistically significant gene-based 
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associations of the other three genes (i.e., GRN, TMEM106B, and KCMNB2) with HS-

Aging in this study, it does not mean that these genes are not associated with HS-Aging. 

Single variants may independently affect HS-Aging pathology rather than the entire gene, 

or there may be interactions between these genes conferring HS-Aging risk via other 

mechanisms, such as TDP-43 proteinopathies or ion channel dysfunction. In the future, 

we plan to examine what role the intronic region of the ABCC9 gene plays in developing 

HS-Aging pathology, and whether there are single variant-based and gene-based gene-

gene interactions among these four genes to HS-Aging. 

 

Funding 

This work was supported by the National Cell Repository for Alzheimer’s Disease (U24 

AG21886), and National Institute on Aging (K25 AG043546, UL1TR000117, and the 

UK-ADC P30 AG028383).  

  



 

32 

 

Table 2.1. Quality control filters for single nucleotide polymorphism 

Criteria # of excluded variants # of passed variants 

MAF < 1% 29,429,731 8,613,031 

Call rate per variant < 95% 1,928,184 6,684,847 

HWE test in controls < 10-5 19,386 6,665,461 

MAF = minor allele frequency; HWE = Hardy-Weinberg equilibrium 

  



 

33 

 

Table 2.2. Comparison of selected characteristics between hippocampal sclerosis of aging 

cases and controls who died at age 60 years or older (n = 3,251) 

Variable 
Cases 

n = 271 

Controls 

n = 2,980 
p-value 

Age at death, mean (SD) 84.8 (8.4) 80.5 (8.8) <0.001 

Sex, n (%)    

 Male 124 (45.8) 1,458 (48.9) 0.349 

 Female 147 (54.2) 1,522 (51.1)  

APOE, n (%)a    

 -/- 114 (46.0) 1,207 (44.1) 0.749 

 -/ε4 109 (43.9) 1,216 (44.4)  

 ε4/ε4 25 (10.1) 314 (11.5)  

MAPT (rs8070723), n (%)b    

 H1/H1 176 (66.2) 1,773 (60.1) 0.146 

 H1/H2 77 (28.9) 1,022 (34.7)  

 H2/H2 13 (4.9) 154 (5.2)  
a APOE genotype information was available for n = 2,985. 
b MAPT genotype information was available for n = 3,215. 

SD = standard deviation; APOE = apolipoprotein E; MAPT = microtubule-associated 

protein tau. 
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Table 2.3. Most associated variant with hippocampal sclerosis of aging in four genes using a logistic regression model assuming a 

recessive/additive/dominant mode of inheritance in people who died at age 60 years or older (n = 3,251) 

Gene MOI Variant 
Risk/protective 

alleles 

RAF 

in cases 

RAF 

in controls 
OR (95% CI)a p-value 

GRN        

 REC rs72824731 C/G 9.5 8.4 3.88 (1.64 – 9.22) 0.0021 

 ADD 
rs2879096 T/C 28.6 24.4 

1.25 (1.02 – 1.53) 0.032 

 DOM 1.38 (1.07 – 1.78) 0.014 

TMEM106B        

 REC 
rs3823612 G/C 64.6 56.5 

1.53 (1.19 – 1.98) 0.0011 

 ADD 1.40 (1.16 – 1.68) 3.6 × 10-4 

 DOM rs13229988 A/G 64.0 56.4 1.67 (1.16 – 2.40) 0.0062 

ABCC9        

 REC 
rs7966849 A/G 60.3 51.2 

1.84 (1.41 – 2.40) 7.1 × 10-6 

 ADD 1.46 (1.22 – 1.76) 4.4 × 10-5  

 DOM rs829080 C/T 59.1 40.9 1.76 (1.18 – 2.62) 0.0057 

KCNMB2        

 REC rs13091964 T/C 96.1 92.9 1.84 (1.15 – 2.96) 0.011 

 ADD 
rs73183328 A/G 5.0 2.2 

2.42 (1.56 – 3.76) 8.2 × 10-5 

 DOM 2.40 (1.52 – 3.78) 1.6 × 10-4 
a Adjusted for age at death, sex and the top three principal components 

MOI = mode of inheritance; RAF = risk allele frequency; OR = odds ratio; CI = confidence interval; REC = recessive; ADD = 

additive; DOM = dominant 
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Table 2.4. Gene-based associations of the target four genes with hippocampal sclerosis of aging assuming a 

recessive/additive/dominant mode of inheritance in people who died at age 60 years or older (n = 3,251) 

Gene 
# of 

variants 
Start position End position 

Gene-based p-value 

REC ADD DOM 

GRN 20 42,417,491 42,435,470 0.012 0.16 0.090 

TMEM106B 222 12,245,848 12,281,890 0.028 0.0089 0.068 

ABCC9 259 21,945,324 22,094,628 2.4 × 10-4 0.0014 0.26 

KCNMB2 939 178,249,224 178,567,217 0.57 0.0079 0.016 

REC = recessive; ADD = additive; DOM = dominant 
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Table 2.5. Gene-based associations of the target four genes with hippocampal sclerosis of 

aging assuming a recessive/additive/dominant mode of inheritance in people who died at 

age 80 years or older (n = 1,883) 

Gene 
 Gene-based p-value  

REC ADD DOM 

GRN 0.24 0.035 0.026 

TMEM106B 0.027 0.0032 0.0070 

ABCC9 0.0017 0.0099 0.18 

KCNMB2 0.23 0.014 0.015 

REC = recessive; ADD = additive; DOM = dominant 
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Table 2.6. Haplotype association with ABCC9 gene expression in human brain assuming 

an additive mode of inheritance 

 NABEC 

(Frontal cortex; n = 130 brains) 

 UKBEC 

(10 brain regions; n = 134 brains) 

 Score statistic a p-value  Score statistic a p-value 

Hap1 -2.968 0.0026  -2.250 0.024 

Hap2 1.450 0.15  1.740 0.081 

Hap3 1.686 0.091  -0.048 0.96 

Hap4 0.214 0.83  -0.822 0.41 

Hap5 0.878 0.38  1.952 0.051 

Global 10.255 0.034  8.455 0.074 

      

rs704180 only  0.010   0.011 
a A positive sign indicates up-regulation of ABCC9 gene expression and vice versa. 

 

NABEC = North American Brain Expression Consortium (GEO accession: GSE36192); 

UKBEC = United Kingdom Brain Expression Consortium (http://www.braineac.org/). 
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Figure 2.1. Flow diagram of the subjects included in the analyses. Genetic data were 

obtained from subjects in ADGC who had the NACC individual IDs. Phenotype data 

were available from the neuropathological dataset in NACC. The inclusion/exclusion 

criteria, quality control and removal of ethnic outliers were applied in order. 

ADGC = Alzheimer’s Disease Genetics Consortium; NACC = National Alzheimer’s 

Coordinating Center; NP = neuropathological dataset; HS-Aging = hippocampal sclerosis 

of aging 
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Figure 2.2. The first and second principal components plots along with 1000 genome 

reference samples. Block dot indicates individuals in this study. We chose individuals 

within the red dotted circle based on Euclidean distance from an individual with 

maximum first and second principal components. 

AFR = African; AMR = Admixed American; EAS = East Asian; EUR = European; SAS 

= South Asian 
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Figure 2.3. Proportion and 95% confidence interval of hippocampal sclerosis of aging 

cases 
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Figure 2.4. Estimation of haplotype frequencies and association using four tag single 

nucleotide polymorphisms on the ABCC9 gene when assuming a recessive mode of 

inheritance. Box indicates an exon. 
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CHAPTER THREE 

Translating Alzheimer’s disease risk polymorphisms into functional candidates 

: a survey of IGAP genes 

 

Abstract  

Alzheimer’s disease (AD) is the most common form of dementia. The report with the 

largest numbers of cases and controls was the International Genomics of Alzheimer’s 

Project (IGAP), a consortium to discover the genetic landscape of AD that included 

74,046 individuals to show significant AD-associations with 19 SNPs. However, we have 

relatively little understanding of the functional impact of these loci in regards to AD 

pathogenesis. In this study, we elucidated the role of the non-coding SNPs identified in 

IGAP hypothesizing that each IGAP SNP is a proxy of a coding variant and/or a 

regulatory variant. Our genetic data were obtained from the Alzheimer's Disease 

Sequencing Project (ADSP). For the first hypothesis, rs2296160 in CR1, rs9270303, 

rs1049092, and rs1049086 in HLA-DRB5, rs2405442 and rs1859788 in ZCWPW1, rs7982 

in CLU, rs12453 and rs7232 in MS4A6A, and rs3752246 in ABCA7 may be proxies of 

coding SNPs. For the second hypothesis, rs6656401 in CR1, rs10838725 in CELF1, and 

rs8093731 in DSG2 may be regulatory SNPs affecting AD-associated gene expression. 

Our approach for identifying proxies and examining eQTL lessens the impact of the 

crude gene assignment, although this still remains an open question in the field. 
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Introduction 

Dementia is a clinical state caused by neurodegeneration and characterized by a loss of 

function in cognitive domains and behavior. Alzheimer’s disease (AD) is the most 

common form of dementia, accounting for over 50% of dementia cases [1]. Although it 

has been more than 100 years since Alois Alzheimer published “About a Peculiar Disease 

of the Cerebral Cortex” in 1907 [3], the exact cause of AD is yet to be identified. 

Amyloid β (Aβ) protein and hyperphosphorylated tau aggregates in the brain are 

considered to be the key pathological hallmarks in AD patients [4, 5]. A predominant 

mechanistic hypothesis for AD pathogenesis is the “amyloid cascade hypothesis” that 

suggests that AD is caused by lack of Aβ clearance, which triggers downstream neuronal 

injury such as synaptic and neuronal loss, enhanced neuroinflammation, tau 

hyperphosphorylation, and eventually the clinical symptoms of AD [6].  

 

Familial AD, which often occurs early in life, is linked mainly to mutations in three 

genes: amyloid precursor protein (APP) and the presenilin proteins (PSEN1 and PSEN2) 

[8], which generally cause a shift in Aβ production from Aβ40 to less soluble and more 

neurotoxic Aβ42 (e.g., Volga German mutation in PSEN2 and Iberian mutation in APP) 

[26-29], an increased total Aβ levels (Swedish mutation in APP) [30], and an increased 

protofibril formation of Aβ (Arctic mutation in APP) [31]. On the other hand, late-onset 

AD (LOAD), which accounts for 95% of all AD cases [32], has a more complex genetic 

architecture. The ε4 allele of apolipoprotein E (APOE) gene is the most well-established 

susceptibility gene for LOAD. There are three apoE isoforms, apoE2 (cys112, cys158), 

apoE3 (cys112, arg158), and apoE4 (arg112, arg158), determined by two single 
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nucleotide polymorphisms (SNPs) rs429358 (T/C) and rs7412 (C/T) located on 

chromosome 19q13. These isoforms have different effects on Aβ metabolism, influencing 

age of onset of Aβ deposition. It is suggested that the binding ability of the apoE isoforms 

to Aβ follows the increasing order of apoE2, apoE3 and apoE4, and thus apoE2 and 

apoE3 inhibit the aggregation and enhance the clearance of Aβ compared to apoE4 [33]. 

The APOE alleles are also reported to be associated with tau levels in CSF [34, 35]. This 

association, however, has not been established as thoroughly as the association between 

APOE alleles and Aβ deposition [36].  

 

A series of genome-wide association studies (GWAS) have identified AD-associated 

SNPs in addition to the APOE alleles. The report with the largest numbers of cases and 

controls was the International Genomics of Alzheimer’s Project (IGAP), a consortium to 

discover the genetic landscape of AD that included 74,046 individuals to show significant 

AD-associations with 19 SNPs by meta-analyzing GWAS from four component consortia 

[41]. The SNPs are in or close to genes that include CR1, BIN1, INPP5D, MEF2C, 

CD2AP, NME8, EPHA1, PTK2B, PICALM, SORL1, FERMT2, SLC24A4-RIN3, DSG2, 

CASS4, HLA-DRB5-DBR1, CLU, MS4A6A, ABCA7, CD33, ZCWPW1, and CELF1 

(Table 1.2). Although GWAS have succeeded in revealing numerous susceptibility 

variants for AD, it is difficult to determine whether the genes and SNPs at these loci are 

functional and to understand how they contribute to AD pathogenesis. 

 

Genetic variants located in coding regions are much less frequent than those in non-

coding regions (about only 1% of variants are within a protein-coding sequence) [54]. 
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However, it is estimated that about 85% of the mutations with large effects on diseases 

are located in protein-coding functional regions [55]. To understand disease development 

mechanisms that underlie AD-associated genetic variants, identifying functional genes 

and/or variants is an important challenge. Functional variants may be located in a coding 

region, an alternative splicing region, or a regulatory region such as promoter, operator, 

insulator, enhancer or silencer. Nonsynonymous variants may have effects on the protein 

structure and function. Many Mendelian diseases are due to nonsynonymous mutations 

causing deleterious amino acid substitutions. Synonymous mutations occur in the coding 

region but do not change the amino acid sequence. These variants were referred to as 

“silent mutations” until recently [56]. Several synonymous mutations have been reported 

to affect mRNA splicing and stability, gene expression, and protein folding and function 

[56]. Other disease-associated genetic variants are located in the intronic and intergenic 

regions (i.e., non-coding regions) which may contain regulatory or splice sites. Intronic 

and intergenic variants may have an important role in regulating expression level of 

disease-associated genes and modulating translation efficiency and stability [57].  

 

In this study, we elucidated the role of the non-coding SNPs identified in the IGAP 

consortium (hereinafter referred to as “IGAP SNPs”) within a systems genetics 

framework. Systems genetics is a global approach to understand how genetic information 

flows from DNA to transcripts, proteins, metabolites, and ultimately diseases [121]. 

Figure 3.1A shows three possible pathways linking a SNP, a transcript (mRNA), and a 

phenotype [121-123]. The first model is the causal relationship model in which the SNP 

affects phenotype by acting through mRNA. Second, the reactive model proposes that the 
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SNP requires the phenotype to affect the mRNA. The third model is the independent 

model in which the SNP affects mRNA and phenotype independently. Focusing on these 

models in this study, we hypothesized that each IGAP SNP is: (1) a proxy of a coding 

SNP (Figure 3.1B and 3.1C) or (2) a regulatory SNP (Figure 3.1D). One frequently used 

approach to test the first hypothesis is to identify coding SNPs in strong linkage 

disequilibrium (LD) with the SNP identified by GWAS. LD is generally measured using 

the squared correlation coefficient (r2) between two SNPs, and the most widely used 

threshold is r2 ≥ 0.8. For the second hypothesis, expression quantitative trait locus 

(eQTL) analysis can be used. eQTL is a genetic locus that contributes to variation in gene 

expression. By mapping eQTL, we investigate how the SNPs regulate gene expression.  

 

Material and methods 

Genetic datasets 

Our genetic data were obtained from the Alzheimer's Disease Sequencing Project 

(ADSP) with whole exome sequence (WES) data to limit the possibility of imputation 

errors. ADSP is comprised of 18 cohorts from the Alzheimer's Disease Genetic 

Consortium (ADGC) and 6 from the Cohorts for Heart and Aging Research in Genomic 

Epidemiology (CHARGE) Consortium (Table 3.1). There were 10,913 unrelated subjects 

with WES data in ADSP. For our study, we limited the subjects to those who had AD 

diagnosis information and who were 65 years or older at the last visit or at death, yielding 

a total of 10,468 ADSP subjects with WES data (Figure 3.2). 
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Gene expression datasets 

Quality-controlled microarray gene expression from blood samples and whole genome 

sequence (WGS) datasets were obtained from the Alzheimer's Disease Neuroimaging 

Initiative (ADNI) database (available through http:// adni.loni.usc.edu). We included 661 

subjects aged 65 years or older who had both gene expression and WGS data available. 

We considered AD diagnosis (normal, mild cognitive impairment (MCI), or AD) closest 

to the year when the blood sample was drawn. 

 

We retrieved human brain gene expression and genotype dataset from the North 

American Brain Expression Consortium (NABEC) [93] and United Kingdom Brain 

Expression Consortium (UKBEC) [94]. Details are described in our previous report 

[124]. Briefly, the NABEC gene expression data in two brain regions (cerebellum and 

frontal cortex) were available at Gene Expression Omnibus (GEO) public repository and 

the genotype data were obtained from the database of Genotypes and Phenotypes 

(dbGaP: http://www.ncbi.nlm.nih.gov/gap). After performing standard QC procedures, 

we imputed the genotype data using the Michigan Imputation Server 

(https://imputationserver.sph.umich.edu/start.html) [95, 96] with the following 

parameters: 1000 Genome Phase 3 v5 reference panel, Eagle v2.3 phasing [96], and EUR 

population. Of the 228 neurologically normal donors, 119 subjects who died at age 65 

years or older and passed QC were included in the analysis (all were US Caucasians). 

The UKBEC gene expression in ten brain regions (cerebellar cortex (CRBL), frontal 

cortex (FCTX), hippocampus (HIPP), medulla (MEDU), occipital cortex (OCTX), 

putamen (PUTM), substantia nigra (SNIG), thalamus (THAL), temporal cortex (TCTX), 
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and white matter (WHMT)) and the genotype data in 134 neuropathologically normal 

individuals were obtained from the BRAINEAC website (http://www.braineac.org/). The 

dosage genotype data were converted into PLINK file format using Genome-wide 

Complex Trait Analysis (GCTA) software version 1.24.4 [97].  

 

Since the NABEC and UKBEC datasets do not have AD diagnosis information, we 

obtained two datasets to examine whether the levels of gene expressions were different 

between AD statuses. The first dataset was derived from AD cases and controls available 

at Gene Expression Omnibus (GEO) public repository 

(http://www.ncbi.nlm.nih.gov/geo/) under the GEO accession GSE5281 [125]. The gene 

expression data consisted of 9 AD cases and 13 controls in entorhinal cortex (EC), 10 AD 

cases and 12 controls in hippocampus (HIPP), 16 AD cases and 12 controls in medial 

temporal gyrus (MTG), 8 AD cases and 13 controls in posterior cingulate (PC), 23 AD 

cases and 11 controls in superior frontal gyrus (SFG), and 19 AD cases and 12 controls in 

primary visual cortex (VCX). The range of age at death was 63 to 102. The second was 

Allen Institute data downloaded at http://aging.brain-map.org/ derived from 38 AD cases 

and 47 controls (AD diagnosis was based on NINCDS-ADRDA Alzheimer's Criteria) in 

white matter (FWM), hippocampus (HIPP), parietal cortex (PCx), and temporal cortex 

(TCx) brain regions. The range of age at death was 77 to 100+. 

 

We excluded probes in Affymetrix that targeted transcripts from different genes (i.e., 

probes with “_x” suffix) if a more reliable probe was available. We also excluded 

monoallelically expressed genes including genes on chromosomes X and Y, and HLA- 
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genes (i.e., HLA-A, HLA-B, HLA-C, HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB, 

HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DQB2, HLA-DRA, 

HLA-DRB1, HLA-DRB5, HLA-E, HLA-F, HLA-G, HLA-J, HLA-P, and HLA-T). 

Expression data were normalized and log2-transformed.  

 

Statistical analysis 

Hypothesis 1: identified IGAP SNPs are proxies of coding SNPs 

For each of the 21 IGAP SNPs (including CD33 and DSG2, although the SNPs 

rs3865444 and rs8093731 were reported not to reach statistical significance on meta-

analysis in IGAP [41]), we first identified SNPs in the nearby coding-regions showing 

strong LD (r2 ≥ 0.8) and moderate LD (0.4 ≤ r2 < 0.8) by using 1000 Genomes Project 

Phase 3 in individuals of European ancestry (1000 Genomes EUR) [84]. We performed 

association tests under an additive mode of inheritance (MOI) assumption for the coding 

SNPs, using logistic regression adjusted for age at the last visit or death, sex, and the top 

5 principal components (computed in PLINK v1.90a [82]). The pathogenic nature of 

nonsynonymous SNPs associated with AD was predicted by SIFT (http://sift.jcvi.org/) 

[126] and PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/) [127] which are in silico 

algorithm tools to predict the effect of amino acid substitution on a protein function.  

 

Hypothesis 2: identified IGAP SNPs are regulatory SNPs 

We evaluated whether the IGAP SNPs were cis- or trans-eQTL on the same chromosome 

as genes. We defined a locus within 1Mb of the 5′ or 3′ ends of the gene as cis-eQTL, and 

a locus more than 1Mb away from the transcription site as a trans-eQTL (Figure 3.1E). 
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We first tested the association between each of the IGAP SNPs and each of all the gene 

expression profiles, assuming an additive MOI as implemented in PLINK v1.90a [82]. 

We then examined whether the levels of gene expression modified by the IGAP SNPs 

were different between AD statuses. An analysis of covariance (ANCOVA) with sex and 

age as covariates was applied to each comparison for all gene expressions identified in 

the eQTL analysis. 

 

For all analyses, we converted the nominal p-values into false discovery rate adjusted p-

values (FDR adjusted p-value) using the Benjamini-Hochberg procedure [128] and 

defined associations with FDR adjusted p-value < 0.05 as significant. 

 

Results 

We considered individuals with either prevalent or incident AD at baseline (year 0) as 

AD cases in ADSP. Descriptive characteristics of the individuals are shown in Table 3.2. 

5,374 (51.3%) were AD cases. 

 

Hypothesis 1: identified IGAP SNPs are proxies of coding SNPs 

We identified 10 exonic SNPs which were in strong LD (r2 ≥ 0.8) and 16 SNPs in 

moderate LD (0.4 ≤ r2 < 0.8) with the IGAP SNPs based on 1000 Genomes EUR (Table 

3.3). We confirmed that the several exonic SNPs demonstrated statistically significant 

associations with AD after FDR adjustment, including rs2296160 in CR1, rs9270303, 

rs1049092, and rs1049086 in HLA-DRB5, rs2405442 and rs1859788 in ZCWPW1, rs7982 

in CLU, rs12453 and rs7232 in MS4A6A, and rs3752246 in ABCA7 (Table 3.4). The 
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association between rs4844600 in CR1 and AD was not confirmed because of the lack of 

WES data in ADSP. Of these 10 coding SNPs, 5 SNPs (rs2296160 in CR1, rs9270303 in 

HLA-DRB1, rs1859788 in PILRA, rs3752246 in ABCA7, and rs7232 in MS4A6A) are 

nonsynonymous (Table 3.5). When we analyzed the nonsynonymous SNPs with SIFT 

and Polyphen-2, rs2296160, rs9270303, rs1859788, and rs3752246 were predicted to 

have minimal impact on their respective proteins (Table 3.5). In contrast, the minor allele 

of rs7232 was predicted to be deleterious and possibly damaging to MS4A6A protein. 

 

Hypothesis 2: identified IGAP SNPs are regulatory SNPs 

Table 3.6 shows gene expressions in the blood that were significantly associated with the 

IGAP SNPs, reaching FDR adjusted significance level. We found that the protective 

allele of rs1476679 in ZCWPW1 was strongly associated with decreased expression of 

multiple PILRB probe sets and TRIM4 expression, and associated with increased 

expressions of ZKSCAN1I, GATS, and PVRIG. The protective allele of rs11771145 in 

EPHA1 was associated with increased LOC154761 expression. The risk allele of 

rs28834970 in PTK2B exhibited cis-eQTL for multiple probe sets for its own expression 

and for the contiguous gene TRIM35. This allele also had trans-association with NSAP11. 

The risk allele of rs10838725 was associated with increased MYBPC3 expression. The 

protective allele of rs983392 was associated with decreased expressions of MS4A6A and 

another family members, MS4A4A. The protective alleles of rs8093731 in DSG2 and 

rs7274581 in CASS4 appeared to be trans-eQTLs. Of these significant gene expressions 

in the blood, only MYBPC3 (11725151_at) potentially regulated by the CELF1 SNP was 

significantly associated with AD status. 
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The FDR adjusted significant associations between the IGAP SNPs and brain gene 

expressions in NABEC and UKBEC are shown in Table 3.7. In NABEC, the protective 

allele of rs10792832 in PICALM was significantly associated with increased expression 

of MRGPRD in CRBL. The protective allele of rs8093731 in DSG2 exhibited trans-

eQTL for the expression of three genes, DLGAP1, NETO1, and KCNG2. The minor allele 

of rs7274581, which is also protective, was significantly associated with the PCK1 

expression in CRBL. Of these patterns, the DLGAP1 and NETO1 expressions in FCTX 

were highly correlated (r2 = 0.78) (Figure 3.3). In UKBEC, rs6656401 in CR1 acted as an 

eQTL for several genes, COL9A2, CERS2 (also known as KASS2), ARHGEF2, CNTN2, 

and CDK18 (also known as PCTK3 and PCTAIRE3) in MEDU, and CR1 itself in the 

average of all ten regions (AveALL) and WHMT. The genes potentially regulated by the 

CR1 SNPs were highly correlated with each other except CR1 expression (r2 = 0.68 to 

0.89) (Figure 3.4). 

 

In comparison with AD controls using GSE5281, AD cases had significantly lower 

expressions of DLGAP1 in MTG and SFG, NETO1 in EC, MTG, PC, and SFG, KCNG2 

in MTG, CR1 in MTG, and ARHGEF2 in EC. On the other hand, AD cases had 

significantly higher expressions of DLGAP1 in HIP, COL9A2, CERS2, and CR1 in EC, 

and ARHGEF2 in PC (Table 3.8 and Table 3.9). For the Allen Institute dataset, 

significantly higher expressions of KCNG2, CNTN2, ARHGEF2, and CDK18 in AD 

cases have seen only in TCx (Table 3.10). 
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Discussion 

Although recent studies have identified novel GWAS loci that affect AD risk, we have 

relatively little understanding of the functional impact of these loci in regards to AD 

pathogenesis. In this study, we examined the possible functional effects of the IGAP 

SNPs on AD under two hypotheses: “the IGAP SNP is a proxy of a coding SNP” and 

“the IGAP SNP is a regulatory SNP”. For the first hypothesis, rs2296160 in CR1, 

rs9270303, rs1049092, and rs1049086 in HLA-DRB5, rs2405442 and rs1859788 in 

ZCWPW1, rs7982 in CLU, rs12453 and rs7232 in MS4A6A, and rs3752246 in ABCA7 are 

proxies of coding SNPs. For the second hypothesis, rs6656401 in CR1, rs10838725 in 

CELF1, and rs8093731 in DSG2 are associated with gene expression, although whether 

these SNPs are proxies for the functional regulatory SNP or functional themselves 

requires further studies. 

 

Hypothesis 1: identified IGAP SNPs are proxies of coding SNPs 

CR1 SNPs 

The IGAP SNP rs6656401 in CR1 was the most striking SNP in this study for several 

reasons. First, there were 2 coding SNPs (one is synonymous and the other is 

nonsynonymous) in strong LD with the IGAP SNP. Second, the IGAP SNP acted as cis- 

or trans-eQTL for the several gene expressions in the brain. Last, these expressions were 

associated with AD. CR1, located on chromosome 1q32.2, encodes complement receptor 

1 in a cluster of complement-related proteins which plays an important role in the 

immune system [129]. The CR1 protein is a receptor for complement fragments binding 

to Aβ, and thus the change in CR1 protein structure and expression levels may be related 
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to Aβ clearance [130]. We found the two coding SNPs, rs4844600 and rs2296160, which 

were in strong LD with the IGAP SNP rs6656401. The coding SNP rs2296160 is 

nonsynonymous, causing alanine-to-threonine amino acid substitution at codon position 

2419 (A2419T), while the SNP rs4844600 is synonymous (E60E). The IGAP SNP as 

well as the coding SNPs acted as cis-eQTL for CR1 expression itself (Figure 3.5). The 

most associated SNP with the CR1 expression was the nonsynonymous SNP rs2296160. 

This may imply that the change in CR1 protein structure may change the expression level 

of the gene itself through an autoregulatory mechanism. 

 

Furthermore, the higher CR1 expression detected by the probe set 244313_at in EC 

increased the risk of AD in GSE5281 dataset. Consistent with our findings, the SNP 

rs1408077 in CR1, which is in strong LD with the IGAP SNP rs6656401, was reported to 

be associated with loss of EC thickness [69], and the IGAP SNP rs6656401 A carriers 

had smaller local gray matter volume in EC of young health adults which may lead to an 

increased risk of LOAD [131]. These results may indicate that there is a causal 

relationship between CR1 SNPs, CR1 expression, and AD development, although we 

cannot mention which model this relationship is on: causal model or reactive model in 

Figure 3.1.  

 

Other gene expressions than CR1 potentially regulated by CR1 SNPs were highly 

correlated with each other in MEDU in UKBEC. These genes are highly expressed in 

oligodendrocytes 

(http://web.stanford.edu/group/barres_lab/brainseqMariko/brainseq2.html) [132]. The 
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COL9A2 and CERS2 genes were over-expressed in EC of AD cases. The ARHGEF2 gene 

was over-expressed in PC and TCx of AD cases and under-expressed in EC of AD cases. 

The genes CNTN2 and CDK18 were significantly over-expressed in TCx of AD cases. In 

future work, gene co-expression network analysis will be required to understand how 

these gene expressions affect in each of the brain regions of AD cases. 

 

ZCWPW1 SNPs 

ZCWPW1 (zinc finger, CW type with PWWP domain 1) is located on chromosome 

7q22.1. We found two coding SNPs, rs2405442 and rs1859788, which were in strong LD 

with the IGAP SNP rs1476679. The coding SNP rs1859788 is nonsynonymous, causing 

glycine-to-arginine amino acid substitution at codon positions 78 (G213R). The IGAP 

SNP as well as the coding SNPs acted as cis-eQTLs for three gene expressions (GATS, 

TRIM4, and PILRB) in the blood, although we did not find significant associations 

between these blood gene expressions and AD.  

 

MS4A6A SNPs 

MS4A6A, located on chromosome 11q12.2, encodes a member of membrane-spanning 

4A gene family (membrane-spanning 4A domains, subfamily A, member 6A). We also 

found two coding SNPs, rs12453 and rs7232, which were in strong and moderate LD 

with the protective IGAP SNP rs983392. The coding SNP rs7232 is nonsynonymous, 

causing threonine-to-serine amino acid substitution at codon positions 213 (T213S), 

while the SNP rs12453 is synonymous (L137L). The IGAP SNP as well as the coding 

SNPs affected MS4A6A expression itself and its gene family MS4A4A in the blood. 
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However, we did not find FDR adjusted significant associations between these blood 

gene expressions and AD. MS4A genes are highly expressed in hematopoietic cells, and 

involved in the regulation of calcium signaling [133]. Although the function of MS4A6A 

protein are still unknown, it is possible that the MS4A6A SNPs is linked to AD via 

deregulation of calcium signaling implicated in neurodegenerative diseases [134, 135].  

 

CLU SNPs 

We confirmed synonymous SNP rs7982 was in strong LD with the IGAP SNP rs9331896 

and was protectively associated with AD. However, we found no significant gene 

expressions regulated by the CLU IGAP SNP and the synonymous SNP. CLU, also 

known as apolipoprotein J, is located in chromosome 8p21.1, and encodes clusterin. 

Clusterin directly influences Aβ, regulating the conversion of Aβ into insoluble forms 

[136, 137]. CLU has mainly two isoforms, nuclear CLU (nCLU, isoform 1) and secretary 

CLU (sCLU, isoform 2) with different functions. The sCLU form is pro-survival, while 

nCLU is pro-apoptotic [138]. Since the coding SNP rs7982 is synonymous, it would 

affect alternative splicing as Ling et al. showed that the protective SNP rs11136000 

(which is in almost perfect LD with rs7982 in 1000 genomes EUR) was associated with 

increased nCLU expression level [139]. We would need to examine how the isoforms 

affects Aβ clearance in future. 

 

HLA-DRB5-DRB1 SNPs 

The IGAP SNP rs9271192 is located in intergenic region (chromosome 6p21.32), 

contiguous to HLA class II genes (HLA-DR, -DQ and -DP). There were two coding 
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SNPs which were in strong or moderate LD with the IGAP SNP: the nonsynonymous 

rs9270303 is in HLA-DRB1 and the synonymous rs1049092 is in HLA-DQB1. Several 

HLA-DR and HLA-DQ genes are monoallelically expressed. There are three classes of 

monoallelically expressed genes [140, 141]. One is the autosomal imprinted genes 

regulated in a parent-of-origin specific manner. The second one is X-inactivated. The last 

class is for randomly monoallelically expressed genes in autosome, in which several 

immune system genes are included [140, 141]. Given epigenetic association between 

DNA methylation in HLA-DRB5 and AD pathology [142], allele specific expression may 

impact on biological function related to AD.  

 

ABCA7 SNPs 

We confirmed that nonsynonymous SNP rs3752246 was in strong LD with the IGAP 

SNP rs4147929 and was associated with AD risk. However, we found no significant gene 

expressions regulated by the ABCA7 IGAP SNP or the nonsynonymous SNP. ABCA7 is 

located in chromosome 19p13.3, and encodes a member of the superfamily of ATP-

binding cassette transporters. ABCA7 is expressed in microglia and oligodendrocytes 

[143] and potentially regulates lipid efflux and Aβ accumulation [144, 145]. Several 

SNPs in or close to ABCA7 were identified as AD risk alleles [41, 42, 68]. However, the 

impact of these SNPs is not yet well understood. 

 

Hypothesis 2: identified IGAP SNPs are regulatory SNPs 

In CELF1, we did not have sufficient evidence that the IGAP SNP rs10838725 and the 

coding SNP rs2293576 in strong LD with the IGAP SNP were associated with AD. 
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However, rs10838725 acted as cis-eQTL for MYBPC3 expression in the blood which was 

associated with AD. MYBPC3 is located on chromosome 11p11.2, and encodes cardiac 

myosin binding protein C expressed exclusively in heart muscle [146]. Huang et al. 

reported that the MYBPC3 and SPI1 were associated with the allele of rs1057233 in 

CELF1 (r2 = 0.17 and D’ = 0.97 with the IGAP SNP rs10838725 as shown in Table 1.2), 

and suggested that the association of MYBPC3 expression came from leaky transcription 

driven by the adjacent SPI1 expression [72].  

 

In addition to CR1, several IGAP SNPs were associated with gene expression in the 

brain. DLGAP1 and NETO1 expressions were regulated by the DSG2 IGAP SNP and 

were highly correlated with each other in FCTX. Interestingly, these genes were 

significantly under-expressed in MTG and SFG brain region of AD cases. The DSG2 

IGAP SNP also regulated KCNG2 expression which was under-expressed in MTG of AD 

cases as well, although it was not correlated with the DLGAP1 and NETO1 expressions. 

DLGAP1 is located in chromosome 18p11.31 more than 25Mb away from DSG2, and 

encodes disks large-associated protein 1 (also known as guanylate kinase- associated 

protein (GKAP)). NETO1 is located in chromosome 18q22.3 more than 40Mb away from 

DSG2 and encodes neuropilin and tolloid like 1. Both DLGAP1 and NETO1 are mainly 

expressed in neuros 

(http://web.stanford.edu/group/barres_lab/brainseqMariko/brainseq2.html) [132], and 

may be involved in the N-methyl-D-aspartate receptor-dependent synaptic plasticity [147, 

148]. KCNG2 located in chromosome 18q22.3, encodes a voltage-gated potassium 

channel subfamily G member 2, which is a potassium channel subunit. Potassium 
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channels are important regulatory proteins also associated with synaptic plasticity [149]. 

Synaptic plasticity is a fundamental property of the nervous system [150, 151]. Elevated 

Aβ levels induce synaptic dysfunction, and thus loss of synaptic proteins may contribute 

to AD progression. Although the role of DSG2 gene is unknown, this may imply that 

DSG2 is involved in brain functions including memory and learning. 

 

There are limitations to this study. We aggregated data from many rich resources that aid 

in establishing a confluence of related information; however, these datasets are 

heterogeneous and can exhibit biases from the respective study designs, analytic 

protocols, and participant pools. As per common but inexact convention, we identified 

genes as those closest to the identified IGAP SNP. Although our approach for identifying 

proxies and examining eQTL lessens the impact of this crude gene assignment, this still 

remains an open question in the field. 

 

In summary, investigating the functional role of the suspected and replicated SNPs 

associated with AD is an important next step to understanding the genetic contributions 

and the functional pathways linking AD developmental mechanisms. AD is a complex 

disease with a strong genetic component. However, much of the genetic contribution to 

AD remains unexplained. In future studies, we will need to investigate how RNA and 

protein levels as well as their interactions are affected the known genes. 
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Table 3.1. ADGC and CHARGE studies in ADSP 

Consortium Study 

ADGC  

 ACT 

 ADC 

 CHAP 

 EFIGA 

 GDF 

 MAP 

 MAYO 

 MAYO PD 

 MIA 

 MIRAGE 

 NCRAD 

 NIA-LOAD 

 RAS 

 ROS 

 TARCC 

 TOR 

 VAN 

 WHICAP 

  

CHARGE  

 ARIC 

 ASPS 

 CHS 

 ERF 

 FHS 

 RS 

ADGC = Alzheimer's Disease Genetic Consortium; CHARGE = Cohorts for Heart and 

Aging Research in Genomic Epidemiology; ADSP = Alzheimer's Disease Sequencing 

Project; ACT =Adult Changes in Thought; ADC = NIA Alzheimer Disease Centers; 

CHAP = Chicago Health and Aging Project; EFIGA = Estudio Familiar de la Influencia 

Genetica en Alzheimer; GDF = Genetic Differences; NIA-LOAD = National Institute on 

Aging (NIA) Late Onset Alzheimer's Disease Family Study; MAP = Memory and Aging 

Project; MAYO = Mayo Clinic; MAYO PD = Mayo PD; MIA = University of Miami; 

MIRAGE = Multi-Institutional Research in Alzheimer's Genetic Epidemiology; NCRAD 

= National Cell Repository for Alzheimer's Disease; RAS = University of Washington 

Families; ROS = Religious Orders Study; TARCC = Texas Alzheimer's Research and 

Care Consortium; TOR = University of Toronto; VAN = Vanderbilt University; 

WHICAP = Washington Heights-Inwood Columbia Aging Project; ARIC = 

Atherosclerosis Risk in Communities Study; ASPS = Austrian Stroke Prevention Study; 

CHS = Cardiovascular Health Study; ERF = Erasmus Rucphen Family; FHS = 

Framingham Heart Study; RS = Rotterdam Study  
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Table 3.2. Characteristics of the individual in ADSP 

Variable 
Overall 

n (%) 

AD cases 

n (%) 

AD controls 

n (%) 

ADSP (n = 10,468) 5,374 (51.3) 5,094 (48.7) 

 Sex    

  Male 4,380 (41.8) 2,313 (43.0) 2,067 (40.6) 

  Female 6,088 (58.2) 3,061 (57.0) 3,027 (59.4) 

 Age at the last visit or at death   

  65-69 570 (5.5) 537 (10.0) 33 (0.6) 

  70-74 1,127 (10.8) 1,062 (19.8) 65 (1.3) 

  75-79 1,355 (12.9) 1,153 (21.5) 202 (4.0) 

  80-84 2,650 (25.3) 1,092 (20.3) 1,558 (30.6) 

  84-90 3,139 (30.0) 896 (16.7) 2,243 (44.0) 

  90+ 1,627 (15.5) 634 (11.8) 993 (19.5) 

 APOE    

  -/- 7,476 (71.4) 3,140 (58.4) 4,336 (85.1) 

  -/ε4 2,900 (27.7) 2,159 (40.2) 741 (14.5) 

  ε4/ε4 91 (0.9) 75 (1.4) 17 (0.3) 

ADSP = Alzheimer's Disease Sequencing Project; APOE = apolipoprotein E 
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Table 3.3. Exonic single nucleotide polymorphism correlated with the IGAP SNP 

 IGAP SNP 
Closest 

Gene 

Exonic SNP  1000 Genomes EUR 

SNP ID Position Variant a Alleles b Gene  MAF r2 D’ 

Strong LD (r2 ≥ 0.8)        

 rs6656401 CR1 rs4844600 207,679,307 E60E G/A CR1  0.19 0.88 0.99 

   rs2296160 207,795,320 A2419T G/A CR1  0.18 0.84 0.93 

 rs9271192 HLA-DRB5 rs9270303 32,557,483 A13T C/T HLA-DRB1  0.25 0.92 0.99 

 rs1476679 ZCWPW1 rs2405442 99,971,313 L12L C/T PILRA  0.32 0.85 0.97 

   rs1859788 99,971,834 G78R G/A PILRA  0.32 0.85 0.97 

 rs9331896 CLU rs7982 27,462,481 H263H G/A CLU  0.39 0.90 0.97 

 rs10838725 CELF1 rs2293576 47,434,986 A191A G/A SLC39A13  0.31 0.84 0.99 

 rs983392 MS4A6A rs12453 59,945,745 L137L T/C MS4A6A  0.40 0.80 0.91 

 rs4147929 ABCA7 rs3752246 1,056,492 A1527G C/G ABCA7  0.19 0.97 1 

 rs3865444 CD33 rs12459419 51,728,477 A14V C/T CD33  0.31 1 1 
a The first amino acid is linked to major allele and the second one to minor allele. b Major/minor alleles 

IGAP = International Genomics of Alzheimer’s Project; SNP = single nucleotide polymorphism; MAF = minor allele frequency; LD= 

linkage disequilibrium; 1000 Genomes = 1000 Genomes Project Phase 3 in individuals of European ancestry 

  



 

 

6
4
 

Table 3.3. (Continued) 

 IGAP SNP 
Closest 

Gene 

Exonic SNP  1000 Genomes EUR 

SNP ID Position Variant a Alleles b Gene  MAF r2 D’ 

Moderate LD (0.4 ≤ r2 < 0.8)        

 rs9271192 HLA-DRB5 rs2308759 32,549,596 V130V C/T HLA-DRB1  0.14 0.45 1 

   rs1049092 32,629,802 D201D G/A HLA-DQB1  0.40 0.51 0.97 

   rs1049086 32,629,904 D167D G/A HLA-DQB1  0.40 0.50 0.97 

 rs2718058 NME8 rs2722372 37,890,267 R43K G/A NME8  0.25 0.49 0.93 

   rs2598044 37,890,316 D59D C/T NME8  0.25 0.49 0.93 

 rs1476679 ZCWPW1 rs909152 100,175,473 G337G C/T LRCH4  0.31 0.53 0.75 

 rs10838725 CELF1 rs12286721 47,701,528 I671M A/C AGBL2  0.28 0.48 0.97 

 rs983392 MS4A6A rs7232 59,940,599 T213S T/A MS4A6A  0.36 0.68 0.92 

 rs8093731 DSG2 rs16961975 29,046,606 V509M G/A DSG3  0.012 0.51 0.75 

   rs61730311 29,049,138 R575W C/T DSG3  0.010 0.67 0.90 

 rs4147929 ABCA7 rs4147930 1,064,193 L1995L A/G ABCA7  0.28 0.56 1 

   rs4147934 1,065,018 S2045A T/G ABCA7  0.28 0.55 0.98 

   rs2074442 1,074,000 D275E T/A HMHA1  0.27 0.56 0.97 

   rs2074454 1,080,311 P603P C/G HMHA1  0.26 0.49 0.88 

   rs10404947 1,081,617 Q769Q G/A HMHA1  0.22 0.44 0.74 

 rs3865444 CD33 rs35112940 51,738,917 G304R G/A CD33  0.21 0.57 0.98 
a The first amino acid is linked to major allele and the second one to minor allele. 

IGAP = International Genomics of Alzheimer’s Project; SNP = single nucleotide polymorphism; MAF = minor allele frequency; LD= 

linkage disequilibrium; 1000 Genomes = 1000 Genomes Project Phase 3 in individuals of European ancestry 
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Table 3.4. Association results for exonic SNPs correlated with the IGAP SNPs 

IGAP SNP Closest gene 
Exonic SNP 

SNP ID Gene OR P-value 

Strong LD (r2 ≥ 0.8)     

 rs6656401 CR1 rs4844600 CR1 - - 

   rs2296160 CR1 1.11 7.47 × 10-3 

 rs9271192 HLA-DRB5 rs9270303 HLA-DRB1 1.16 1.68 × 10-4 

 rs1476679 ZCWPW1 rs2405442 PILRA 0.89 1.22 × 10-3 

   rs1859788 PILRA 0.89 1.22 × 10-3 

 rs9331896 CLU rs7982 CLU 0.90 1.30 × 10-3 

 rs10838725 CELF1 rs2293576 SLC39A13 1.08 0.030 

 rs983392 MS4A6A rs12453 MS4A6A 0.89 3.56 × 10-4 

 rs4147929 ABCA7 rs3752246 ABCA7 1.18 1.30 × 10-4 

 rs3865444 CD33 rs12459419 CD33 0.95 0.11 

       

Moderate LD (0.4 ≤ r2 < 0.8)     

 rs9271192 HLA-DRB5 rs2308759 HLA-DRB1 1.09 0.062 

   rs1049092 HLA-DQB1 1.12 7.29 × 10-4 

   rs1049086 HLA-DQB1 1.11 1.37 × 10-3 

 rs2718058 NME8 rs2722372 NME8 0.90 3.19 × 10-3 

   rs2598044 NME8 0.90 3.61 × 10-3 

 rs1476679 ZCWPW1 rs909152 LRCH4 0.97 0.33 

 rs10838725 CELF1 rs12286721 AGBL2 1.05 0.13 

 rs983392 MS4A6A rs7232 MS4A6A 0.87 3.53 × 10-5 

 rs8093731 DSG2 rs16961975 DSG3 1.21 0.23 

   rs61730311 DSG3 1.15 0.45 

 rs4147929 ABCA7 rs4147930 ABCA7 1.10 9.92 × 10-3 

   rs4147934 ABCA7 1.10 6.04 × 10-3 

   rs2074442 HMHA1 1.08 0.045 

   rs2074454 HMHA1 1.09 0.019 

   rs10404947 HMHA1 1.07 0.086 

 rs3865444 CD33 rs35112940 CD33 0.98 0.67 

A bold p-value represents the statistical significance after FDR adjustment. 

IGAP = International Genomics of Alzheimer’s Project; SNP = single nucleotide 

polymorphism; ADSP = Alzheimer's Disease Sequencing Project; OR = odds ratio; LD= 

linkage disequilibrium 
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Table 3.5. Pathogenic nature of nonsynonymous single nucleotide polymorphism associated with AD 

 Exonic SNP Gene 
Major/minor 

allele 
Variant a SIFT PolyPhen-2 

Nonsynonymous     

 rs2296160 CR1 G/A A2419T Tolerated (0.39) Benign (0.0) 

 rs9270303 HLA-DRB1 C/T A13T Tolerated (1.0) Benign (0.0) 

 rs1859788 PILRA G/A G78R Tolerated (1.0) Benign (0.0) 

 rs3752246 ABCA7 C/G A1527G Tolerated (0.88) Benign (0.0) 

 rs7232 MS4A6A T/A T213S Deleterious (0.03) Possibly damaging (0.827) 
a The first amino acid is linked to major allele and the second one to minor allele, and the codon number is for the biggest isoform. 

SNP = single nucleotide polymorphism 
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Table 3.6. Significant cis- and trans-association of the IGAP SNPs with blood gene expressions in ADNI 

IGAP SNP Closest gene Probe set ID a Gene Cis or trans 
eQTL association  AD association 

β P-value b   P-value c 

rs1476679 ZCWPW1 11736388_a_at TRIM4 Cis -0.126 1.16 × 10-8  0.78 

  11760665_at ZKSCAN1 Cis 0.150 1.96 × 10-7  0.18 

  11722909_a_at GATS Cis 0.177 4.14 × 10-17  0.86 

  11730247_a_at PVRIG Cis 0.088 8.39 × 10-5  0.36 

  11743311_a_at PILRB Cis -0.113 1.20 × 10-8  0.28 

  11730023_s_at PILRB Cis -0.106 3.44 × 10-8  0.53 

  11730022_a_at PILRB Cis -0.129 5.41 × 10-8  0.68 

rs11771145 EPHA1 11755327_s_at LOC154761 Cis 0.110 5.11 × 10-6  0.59 

rs28834970 PTK2B 11761824_at NSAP11 Trans 0.028 8.78 × 10-5  1.00 

  11723344_at TRIM35 Cis -0.067 1.31 × 10-5  0.29 

  11720981_a_at PTK2B Cis 0.109 3.03 × 10-15  0.13 

  11720982_s_at PTK2B Cis 0.079 1.72 × 10-14  0.077 

  11720980_a_at PTK2B Cis 0.089 3.04 × 10-10  0.12 

rs10838725 CELF1 11725151_at MYBPC3 Cis 0.145 1.82 × 10-7  3.80 × 10-4 

rs983392 MS4A6A 11716846_a_at MS4A6A Cis -0.087 1.27 × 10-12  0.045 

  11732865_a_at MS4A4A Cis -0.178 2.69 × 10-6  0.70 

  11751570_a_at MS4A4A Cis -0.148 3.02 × 10-6  0.97 

rs8093731 DSG2 11735070_a_at GNAL Trans -0.317 9.65 × 10-6  0.35 

rs7274581 CASS4 11720252_s_at C20orf194 Trans -0.210 7.33 × 10-5  0.74 

  11723408_a_at MKKS Trans -0.130 5.03 × 10-5  0.85 

A bold p-value represents the statistical significance after FDR adjustment. 
a Probe set IDs on Affymetrix Human Genome U219 Array 
b P-values less than false discovery rate (FDR) adjusted significance level 
c P-values calculated by analysis of covariance with the outcome of gene expression and the predictor of AD status (normal/MCI/AD) 

IGAP = International Genomics of Alzheimer’s Project; SNP = single nucleotide polymorphism; eQTL = expression quantitative trait 

locus; ADNI = Alzheimer's Disease Neuroimaging Initiative  
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Table 3.7. Significant cis- and trans-association of the IGAP SNPs with brain gene expressions in NABEC and UKBEC 

 SNP ID 
Closest 

gene 
Probe set ID a 

Gene 

expression 

Cis or 

trans 

Brain 

region 
β P-value b 

NABEC       

 rs10792832 PICALM ILMN_1714980 MRGPRD Trans CRBLM 0.066 1.62 × 10-5 

 rs8093731 DSG2 ILMN_2380779 DLGAP1 Trans FCTX 0.848 4.87 × 10-10 

   ILMN_1783168 NETO1 Trans FCTX 0.757 1.66 × 10-6 

   ILMN_1780373 KCNG2 Trans CRBLM 0.408 6.76 × 10-5 

 rs7274581 CASS4 ILMN_1731948 PCK1 Trans CRBLM 0.241 7.29 × 10-6 

         

UKBEC       

 rs6656401 CR1 t2408244 COL9A2 Trans MEDU 0.152 3.50 × 10-6 

   t2434716 CERS2 Trans MEDU 0.284 1.87 × 10-6 

   t2437801 ARHGEF2 Trans MEDU 0.183 1.15 × 10-5 

   t2376299 CNTN2 Trans MEDU 0.297 5.59 × 10-6 

   t2376457 CDK18 Trans MEDU 0.323 9.83 × 10-6 

   t2377332 CR1,CR1L Cis AveALL 0.078 4.22 × 10-6 

      WHMT 0.172 6.55 × 10-7 
a Probe set IDs on HumanHT-12_v3 Expression BeadChips in NABEC, and on Affymetrix Exon 1.0 ST Arrays in UKBEC 
b P-values less than false discovery rate (FDR) adjusted significance level  

IGAP = International Genomics of Alzheimer’s Project; SNP = single nucleotide polymorphism; NABEC = North American Brain 

Expression Consortium; UKBEC = United Kingdom Brain Expression Consortium; FCTX = frontal cortex; CRBLM = cerebellum; 

MEDU = medulla; WHMT = white matter; AveALL = average of all 10 regions 
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Table 3.8. Associations between gene expressions identified in NABEC and UKBEC and AD status in GSE5281 dataset, entorhinal 

cortex (EC), hippocampus (HIPP), and medial temporal gyrus (MTG) 

Probe set ID a 
EC  HIP  MTG 

β P-value  β P-value  β P-value 

Identified in NABEC b        

 DLGAP1         

  206489_s_at -0.979 0.058  -1.511 0.010  -1.383 0.03 

  206490_at -0.320 0.31  -0.350 0.084  -1.266 1.04 × 10-3 

  210750_s_at 0.876 0.24  0.915 0.15  -0.348 0.56 

  235527_at -0.761 0.15  0.875 4.59 × 10-5  1.363 0.033 

 NETO1         

  1552736_a_at -0.787 0.10  0.009 0.97  -1.140 0.058 

  1552904_at -1.728 8.03 × 10-4  0.023 0.95  -1.400 0.027 

  1562713_a_at -1.742 0.024  -0.614 0.41  -1.993 6.86 × 10-4 

  236440_at -0.580 0.22  -0.744 0.064  -1.988 7.41 × 10-5 

 KCNG2         

  208550_x_at -0.413 0.26  0.431 0.21  -1.933 6.97 × 10-4 

 PCK1         

  208383_s_at 0.948 0.20  0.787 0.26  1.306 0.030 

A bold p-value represents the statistical significance after FDR adjustment. 
a Probe set IDs on Affymetrix U133 Plus 2.0 array 
b There is no MRGPRD expression data available. 

NABEC = North American Brain Expression Consortium; UKBEC = United Kingdom Brain Expression Consortium; EC = entorhinal 

cortex; HIPP = hippocampus (HIPP); MTG = medial temporal gyrus 
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Table 3.8. (Continued) 

Probe set ID a 
EC  HIP  MTG 

β P-value  β P-value  β P-value 

Identified in UKBEC         

 COL9A2         

  213622_at -0.384 0.32  0.502 0.37  1.031 0.021 

  232542_at 1.696 7.83 × 10-3  0.148 0.76  -0.577 0.32 

 CERS2         

  222212_s_at 0.744 3.63 × 10-3  -0.526 0.11  0.480 0.021 

 ARHGEF2         

  1554783_s_at -1.296 0.092  0.137 0.84  -0.942 0.17 

  207629_s_at -0.319 0.52  -0.390 0.33  -0.373 0.33 

  209435_s_at -0.920 1.79 × 10-6  0.246 0.16  0.058 0.77 

  235595_at 1.033 0.041  0.963 0.058  0.590 0.18 

 CNTN2         

  206970_at -0.993 0.11  -1.725 0.020  -0.460 0.46 

  230045_at 0.751 0.023  -0.550 0.20  -0.146 0.58 

 CDK18         

  214797_s_at -0.352 0.62  0.032 0.94  -0.152 0.78 

 CR1         

  206244_at -0.783 0.24  -1.259 0.013  -2.028 2.29 × 10-3 

  208488_s_at 0.732 0.33  0.151 0.80  -0.231 0.69 

  217484_at 0.840 0.069  0.457 0.35  0.717 0.15 

  244313_at 1.501 3.81 × 10-3  -0.099 0.86  -0.098 0.87 

A bold p-value represents the statistical significance after FDR adjustment. 
a Probe set IDs on Affymetrix U133 Plus 2.0 array 

NABEC = North American Brain Expression Consortium; UKBEC = United Kingdom Brain Expression Consortium; EC = entorhinal 

cortex; HIPP = hippocampus (HIPP); MTG = medial temporal gyrus 
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Table 3.9. Associations between gene expressions identified in NABEC and UKBEC and AD status in GSE5281 dataset, posterior 

cingulate (PC), superior frontal gyrus (SFG), and primary visual cortex (VCX) 

Probe set ID a 
PC  SFG  VCX 

β P-value  β P-value  β P-value 

Identified in NABEC b        

 DLGAP1         

  206489_s_at -1.449 0.012  -1.801 3.57 × 10-4  -0.647 0.20 

  206490_at -0.183 0.51  -1.229 3.20 × 10-3  -0.995 0.011 

  210750_s_at 1.027 0.094  -0.352 0.60  0.755 0.20 

  235527_at -0.722 0.040  -0.671 0.16  -0.937 0.024 

 NETO1         

  1552736_a_at -0.098 0.74  -1.591 6.53 × 10-4  -0.556 0.29 

  1552904_at -1.210 0.068  -0.740 0.061  -0.158 0.81 

  1562713_a_at -1.180 0.13  -2.066 1.10 × 10-3  -0.557 0.16 

  236440_at -1.029 5.19 × 10-3  -1.079 0.049  -0.404 0.29 

 KCNG2         

  208550_x_at 0.729 0.066  -1.089 0.024  0.965 0.017 

 PCK1         

  208383_s_at 0.906 0.28  -0.016 0.98  -0.470 0.48 

A bold p-value represents the statistical significance after FDR adjustment. 
a Probe set IDs on Affymetrix U133 Plus 2.0 array 
b There is no MRGPRD expression data available. 

NABEC = North American Brain Expression Consortium; UKBEC = United Kingdom Brain Expression Consortium; PC = posterior 

cingulate; SFG = superior frontal gyrus; VCX = primary visual cortex 
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Table 3.9. (Continued) 

Probe set ID a 
PC  SFG  VCX 

β P-value  β P-value  β P-value 

Identified in UKBEC        

 COL9A2         

  213622_at -0.029 0.97  -0.142 0.73  0.734 0.034 

  232542_at 0.948 0.16  0.121 0.84  -0.537 0.22 

 CERS2         

  222212_s_at -0.316 0.32  -0.275 0.33  0.567 0.031 

 ARHGEF2         

  1554783_s_at 0.910 0.21  -0.759 0.15  0.924 0.15 

  207629_s_at 0.185 0.69  -0.761 0.041  0.280 0.33 

  209435_s_at 0.461 3.20 × 10-4  -0.671 0.019  0.253 0.13 

  235595_at 2.245 1.02 × 10-3  0.172 0.73  0.400 0.33 

 CNTN2         

  206970_at -1.270 0.070  -1.402 0.011  0.284 0.56 

  230045_at -0.104 0.72  -0.135 0.74  0.006 0.98 

 CDK18         

  214797_s_at 0.714 0.18  -0.899 0.12  0.796 0.18 

 CR1         

  206244_at 1.336 0.082  -1.075 0.10  1.282 0.049 

  208488_s_at 0.332 0.52  -1.239 0.015  0.655 0.20 

  217484_at 0.688 0.24  -0.344 0.45  1.139 4.21 × 10-3 

  244313_at 0.780 0.14  0.299 0.61  1.248 0.01 

A bold p-value represents the statistical significance after FDR adjustment. 
a Probe set IDs on Affymetrix U133 Plus 2.0 array 

NABEC = North American Brain Expression Consortium; UKBEC = United Kingdom Brain Expression Consortium; PC = posterior 

cingulate; SFG = superior frontal gyrus; VCX = primary visual cortex 
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Table 3.10. Associations between gene expressions identified in NABEC and UKBEC and AD status in Allen Institute dataset 

Gene expression a 
FWM  HIP  PCx  TCx 

β P-value  β P-value  β P-value  β P-value 

Identified in NABEC b            

 DLGAP1 0.749 0.028  -0.109 0.056  -0.034 0.51  -0.036 0.38 

 NETO1 0.495 0.095  0.010 0.91  -0.033 0.55  -0.041 0.36 

 KCNG2 0.085 0.43  0.004 0.97  0.035 0.73  0.203 0.020 

 PCK1 0.380 0.25  0.248 0.36  0.533 0.04  0.368 0.096 

              

Identified in UKBEC            

 COL9A2 -0.262 0.12  0.016 0.88  0.062 0.62  0.232 0.041 

 CERS2 -0.087 0.55  0.094 0.11  -0.052 0.55  0.083 0.19 

 ARHGEF2 -0.088 0.27  -0.028 0.51  -0.021 0.59  0.112 1.98 × 10-3 

 CNTN2 -0.143 0.41  0.034 0.70  -0.086 0.42  0.219 0.011 

 CDK18 -0.218 0.22  0.063 0.53  0.059 0.59  0.263 2.41 × 10-3 

 CR1 0.151 0.46  0.128 0.47  0.005 0.97  0.045 0.78 

A bold p-value represents the statistical significance after FDR adjustment. 
a RNA sequencing on Illumina HighSeq 2500 
b MRGPRD expression was removed because of little expressions. 

NABEC = North American Brain Expression Consortium; UKBEC = United Kingdom Brain Expression Consortium; FWM = white 

matter; HIPP = hippocampus; PCx = parietal cortex; TCx = temporal cortex 
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Figure 3.1. Possible causal relationships between single nucleotide polymorphisms (SNPs), mRNA, and phenotype.  

IGAP = International Genomics of Alzheimer’s Project; eQTL = expression quantitative trait locus 
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Figure 3.2. Flow diagram of the subjects included in the analyses. 

ADSP = Alzheimer's Disease Sequencing Project 
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Figure 3.3. Correlation between gene expressions potentially regulated by IGAP SNPs in NABEC  
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Figure 3.4. Correlation between gene expressions potentially regulated by CR1 SNPs in UKBEC
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Figure 3.5. Plot for the associations of the CR1 SNPs with the CR1 expression in the 

average of 10 brain regions of UKBEC. The outlined square, circle, and triangle indicate 

the synonymous SNP rs4844600, the IGAP SNP rs6656401, and the nonsynonymous 

SNP rs2296160, respectively. 

 

SNP = single nucleotide polymorphism; ADSP = Alzheimer's Disease Sequencing 

Project; UKBEC = United Kingdom Brain Expression Consortium 
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CHAPTER FOUR 

Identifying regions harboring Alzheimer’s disease related rare variants using scan-

statistic-based analysis of exome sequencing data 

 

Abstract  

Recent advances in sequencing technologies have allowed the move toward 

comprehensive genome-wide approaches, enabling more accurate genotyping of rare 

variants. To date, several studies have succeeded in identifying rare variants associated 

with Alzheimer’s disease (AD), yielding protective or risk effects. We applied a scan-

statistic-based approach and developed an approach to construct optimized windows 

within a gene to find meaningful clusters harboring risk or protective rare variants for 

AD. Data in this study came from the Alzheimer's Disease Sequencing Project (ADSP) 

comprising 18 studies from the Alzheimer's Disease Genetic Consortium (ADGC), and 6 

studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology 

(CHARGE) Consortium. Of the 10,031 subjects included in this study, 5,142 (51.3%) 

were diagnosed as AD. We evaluated the scan statistics with different settings in TREM2 

and TOMM40 as highly-replicated positive controls. We obtained very similar scan 

statistic values when we specified the whole genome and chromosome as a large genetic 

region. Our optimized window approach captured almost the entire gene in TREM2 and 

the single variant in TOMM40 as a meaningful cluster. Applying the optimized window 

approach in all genes, we detected clusters harboring risk or protective variants for AD 

including MUC6, NXNL1, and BCAM. As more NGS data become available, it is of great 
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interest to see whether these findings are replicated in other cohorts of European ancestry 

as well as different populations. 

 

Introduction 

Over the past decade, genome-wide association studies (GWAS) have identified common 

risk loci for Alzheimer’s disease (AD). It is well known that the ε4 allele of 

apolipoprotein E (APOE) is the major genetic risk factor for late onset of AD. In addition 

to APOE, GWAS have detected and replicated several single nucleotide polymorphisms 

(SNPs) that are associated with susceptibility of AD, including in or close to CR1, BIN1, 

INPP5D, MEF2C, CD2AP, NME8, EPHA1, PTK2B, PICALM, SORL1, FERMT2, 

SLC24A4-RIN3, DSG2, CASS4, HLA-DRB5-DBR1, CLU, MS4A6A, ABCA7, CD33, 

ZCWPW1, and CELF1 [41-45].  

 

Rare variants have become a focus in the recent past. Although GWAS have been 

successful in interrogating genetic variants for association with disease, GWAS are 

performed under the “common disease – common variant” hypothesis positing that 

common traits are caused by the combination of common variants with a small to 

moderate effect [58]. GWAS rely on genotyping preselected SNPs and imputing 

ungenotyped variants based on local linkage disequilibrium (LD) of a set of some 

haplotypes from reference population. Imputation approaches have continually improved 

and are quite accurate for common variants [59, 60] but are not as reliable for rare 

variants [61]. Therefore, imputed rare variants are typically removed from GWAS 

analysis. Although GWAS for common variants have revealed numerous susceptibility 
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variants for common diseases, much of the genetic contribution to common diseases 

remains unexplained – the so called ‘missing heritability’ problem [152, 153]. One 

possible explanation of this missing heritability is that rare variants may account for 

additional disease variability [153, 154].  

 

Recent advances in sequencing technologies have allowed to move toward 

comprehensive genome-wide approaches, enabling to accurately genotype rare variants 

generally defined as a variant with minor allele frequency (MAF) < 1-5%. These next-

generation sequencing (NGS) technologies have the potential to improve our 

understanding the role of both common and rare variants in the underlying biological 

mechanisms of developing a disease. Whole-exome sequencing (WES) and whole-

genome sequencing (WGS) are ideal approaches to identify novel variants and genes 

associated with complex traits.  

 

To date, several studies have reported rare variants associated with AD, yielding 

protective or risk effects. Jonsson et al. found that a rare missense variant in TREM2 -- 

rs75932628 producing an amino acid substitution (arginine to histidine at codon 47) -- 

was associated with the risk of AD [155]. Concurrently, Guerreiro et al. confirmed that 

rs75932628 was the most associated variant with AD in TREM2 [156]. This variant is 

considered the first NGS-based finding of a novel rare variant associated with AD risk. 

Since then, several rare variants have been reported as risk or protective factors for AD, 

including in or near BIN1, UNC5C, TREM2, CD2AP, AKAP9, EPHA1, SORL1, TM2D3, 

PLCG2, ABI3, PLD3, and ABCA7 (Table 4.1).  
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Most coding variants, however, are very rare, and thus an extremely large sample size is 

required to identify a single variant associated with a disease. There are significant 

computational and statistical challenges for these sequencing studies. Traditional single-

variant-based association tests are underpowered to detect rare variant associations unless 

sample size and/or effect size is very large [62]. Instead of testing single variant 

individually, more powerful and computationally efficient approaches for aggregating the 

effects of rare variants have become a standard approach for association testing. Many 

such approaches for testing association between rare variants within a pre-specified 

region and a disease have been proposed. A recently-proposed scan-statistic-based test 

can be used to detect the location of rare variant clusters influencing a disease. The scan-

statistic-based test was introduced into human genetics by Hoh et al [65] to locate 

susceptibility genes. Ionita-Laza et al. adapted this test to identify clusters of rare disease 

risk variants based on a likelihood ratio under a Bernoulli model as proposed by 

Kulldorff [66, 67]. 

 

Variants within a functional protein-coding domain may be located in close proximity 

and may play a similar role in genetic mechanisms of a disease. Unlike association tests 

or other cluster detection analyses, the scan-statistic-based test [67] adopted in this work 

can both detect the location of clusters and examine the association against the null 

hypothesis that variants within a certain scan window are equally likely to confer AD risk 

compared to those outside the window. This approach is powerful when there are clusters 

of disease-related variants with the same direction of association within a selected 
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region/window [67]. In this study, we applied the scan-statistic-based approach and 

optimized windows within a gene to find meaningful clusters harboring risk or protective 

rare variants for AD.  

 

Material and methods 

Study subjects 

Data in this study came from the Alzheimer's Disease Sequencing Project (ADSP) 

comprising 18 studies from the Alzheimer's Disease Genetic Consortium (ADGC), and 6 

studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology 

(CHARGE) Consortium. The ADSP consists of a smaller family-based study and a case-

control study of unrelated subjects. In this study, we used the case-control study dataset 

containing whole exome sequencing (WES) data on 10,913 subjects (Table 4.2). Of the 

10,913 subjects in WES data, 10,468 subjects who had the AD diagnosis available and 

who were 65 years or older at the last visit or at death were included in a principal 

component analysis (PCA) to identify ethnic outliers. PCA was performed in PLINK 

v1.90a [82] using a linkage disequilibrium (LD) pruned subset of markers (pairwise r2 < 

0.2) from these data and 1000 Genomes Project Phase 3 (1000 Genomes) [84] data after 

removing symmetric SNPs and flipping SNPs discordant for DNA strands between 

ADSP WES and 1000 Genomes data. We then plotted the first and second principal 

components (PCs) for each individual (n = 10,468 from ADSP WES and n = 2,504 from 

1000 Genomes) using the ggplot2 R package (version 2.2.0) [85] in R (version 3.4.1; 

http://www.r-project.org). Based on the PC plot, 437 subjects were removed as ethnic 
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outliers (Figure 4.1 and Figure 4.2). We considered individuals who were marked as 

prevalent or incident AD at year 0 AD cases. 

 

ADSP WES data 

We obtained the public access WES data containing biallelic single nucleotide variants 

and insertion/deletion (indels) genotypes from ADSP in the unrelated sample set. The 

WES data was generated by applying a quality control protocol designed by the ADSP 

Quality Control Working Group, removing low-quality variants and samples (see the 

details in Supplementary Method 1). 

 

Statistical analysis 

The likelihood ratio (LR) statistic for the Bernoulli model from the scan-statistic-based 

test is defined as: 

𝐿𝑅𝑊 = {(
�̂�𝑊

�̂�𝐺
)

𝑦𝑊

(
1 − �̂�𝑊

1 − �̂�𝐺
)

𝑛𝑊−𝑦𝑊

(
�̂�𝑊

�̂�𝐺
)

𝑦𝐺−𝑦𝑊

(
1 − �̂�𝑊

1 − �̂�𝐺
)

𝑛𝐺−𝑛𝑊−(𝑦𝐺−𝑦𝑊)

 if �̂�𝑊 > �̂�𝑊

1 otherwise

 

where  

𝑦𝑊 = ∑ 𝑦𝑖

𝑖∈𝑊

, 𝑦𝐺 = ∑ 𝑦𝑖

𝑖∈𝐺

, 𝑛𝑊 = ∑ 𝑛𝑖

𝑖∈𝑊

, 𝑛𝐺 = ∑ 𝑛𝑖

𝑖∈𝐺

 

�̂�𝑊 =
𝑦𝑊

𝑛𝑊
, �̂�𝑊 =

𝑦𝐺 − 𝑦𝑊

𝑛𝐺 − 𝑛𝑊
, �̂�𝐺 =

𝑦𝐺

𝑛𝐺
 

𝑊 is a window with fixed size 𝑤 defined by the number of base pairs, 𝐺 is a large genetic 

region of interest, and 𝑦𝑖 and 𝑛𝑖 are the numbers of AD cases and total subjects carrying 

the 𝑖th rare variant, respectively [67]. The window 𝑊 with the highest 𝐿𝑅𝑊 is the most 

likely region to harbor a cluster of disease-associated variants.  
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The definitions of the large genetic region 𝐺 and the window 𝑊 are flexible. The power 

of the test primarily depends on the total number of risk variants in the entire genetic 

region  𝐺, the expected number of risk variants in the cluster, and the ratio of the 

probabilities of being risk variants inside and outside of the cluster [157]. Other factor 

influencing the power is how well the scanning window size matches the true cluster size. 

The scan statistics are sensitive for the chosen scanning window. A cluster within a 10 kb 

sized region, for example, may not be detected by two consecutive scanning windows of 

5 kb (i.e., the cluster is split by two windows). A sliding window approach (i.e., partially 

overlapping windows) may be one of the solutions for this problem. Another issue is that 

the power may decrease when the true cluster window size is larger relative to the entire 

region and when scanning window size is too large compared to the true cluster size [67]. 

Ideally, one would hope to define a scanning window so that it is matched to the true 

cluster harboring variants related to disease.  

 

We first compared the likelihood ratio (LR) statistic between different settings for a large 

genetic region 𝐺, a fixed window size 𝑊, and a sliding window size using a sliding 

window approach. We used TREM2 (located on chromosome 6p21.1) and TOMM40 

(located on chromosome 19q13.32) as highly-replicated positive controls to evaluate the 

scan statistics for risk and protective effects. Using Fisher’s exact test as implemented in 

PLINK v1.90a [82], we preliminarily confirmed that there was a significant variant in 

each of TREM2 and TOMM40 based on the false discovery rate (FDR)-adjusted p-value 

(i.e., q-value) < 0.05 defined as a significance level (Table 4.3). The variant rs75932628 
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(R47H, position: 41,129,252) in TREM2 was a significant risk rare variant for AD, 

showing a MAF of 0.94% in AD cases and 0.21% in controls. The odds ratio (OR) was 

4.41 and p-value was 4.30 × 10-12. On the other hand, the variant rs1160983 (S183S, 

position: 45,397,229) in TOMM40 had a protective effect with a MAF of 1.80% in AD 

cases and 4.34% in controls (OR = 0.39 and p-value = 2.12 × 10-21). TOMM40 is close to 

the APOE locus and the variant was in LD with APOE ε2 known as a protective factor (r2 

= 0.35 and D’ = 0.95).  

 

We tried to find optimized windows in TREM2 and TOMM40 by maximizing 𝐿𝑅𝑊 under 

the difference genetic region 𝐺 settings. In addition to these positive control genes, we 

applied the optimized window approach in all genes to identify regions that presumably 

target AD associated loci (see the details in Supplementary Method 2). We then evaluated 

the optimized windows using the burden test and sequence-kernel association test 

(SKAT) for the optimized windows (Supplementary Method 3) [63, 64]. The SKAT is 

powerful when both risk and protective variants are mixed and when a small proportion 

of variants are causal, whereas the burden test is more powerful than SKAT when most of 

the variants are causal and have the same direction of effect [63]. We used these 

properties to confirm whether the optimized windows successfully captured a cluster 

harboring risk or protective rare variants for AD. 

 

In all analyses above, we assumed a dominant mode of inheritance (MOI), and defined a 

rare variant as a variant of MAF < 0.05. We removed variants with a minor allele count 
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(MAC) < 5. Variants were assigned to genes based on their physical positions at the 

UCSC Genome Browser GRCh37/hg19 human assembly (https://genome.ucsc.edu/) [87]. 

 

Results 

Of the 10,031 subjects included in this study, 5,142 (51.3%) were diagnosed as AD. 

There were more females than males in both AD cases and controls. The majority of 

controls were aged 80 years or older and had no APOE ε4 alleles (Table 4.4). 

 

Scan-statistic-based analysis by a sliding window approach in TREM2 and TOMM40 

Table 4.5 shows the log 𝐿𝑅𝑊s for each window determined by a sliding window 

approach with several different settings in TREM2 (risk effect) and TOMM40 (protective 

effect). In both TREM2 and TOMM40, the log 𝐿𝑅𝑊s were very similar when the large 

genetic region 𝐺 was the whole genome or entire chromosome (6 and 19). When the large 

genetic region 𝐺 was the band level (6p21.1 and 19q13.32), the log 𝐿𝑅𝑊s were a little bit 

smaller than those for the whole genome and entire chromosome specified as 𝐺. The 

largest log 𝐿𝑅𝑊 (log 𝐿𝑅𝑊 ≈ 31) in TREM2 was obtained with the 5kb fixed and 2.5 kb 

sliding window sizes (41,125,156 - 41,130,156) and the 10kb fixed and 5kb sliding 

window sizes (41,120,156 - 41,130,156 and 41,125,156 - 41,135,156). From these 

results, we expected that a meaningful cluster would exist in 41,125,156 - 41,130,156. On 

the other hand, the setting with the 10kb fixed and 5kb sliding window sizes produced 

less log 𝐿𝑅𝑊 than other two window settings in TOMM40, implying that an interesting 

cluster would be in 45,395,468 - 45,397,468.  
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Scan-statistic-based analysis by an optimized window approach in TREM2 and TOMM40 

We optimized windows with each large genetic region 𝐺 in TREM2 and TOMM40 (Table 

4.6). As expected above, we detected the optimized window 41,126,655 - 41,129,252 in 

TREM2 existing within 41,125,156 - 41,130,156 and containing rs75932628 (R47H, 

position: 41,129,252), whichever large genetic region 𝐺 was specified. In TOMM40, the 

optimized window contained the associated single variant rs1160983 (S183S, position: 

45,397,229) that was located within 45,395,468 - 45,397,468 detected by the sliding 

window approach. 

 

Genome-widely scan-statistic-based analysis by an optimized window approach 

We applied the optimized window approach for all genes to identify clusters harboring 

risk or protective variants associated with AD (Figure 4.3). Top 10 genes with large 

log 𝐿𝑅𝑊 for each risk and protective effects were displayed in Table 4.7. Besides TREM2 

and TOMM40, the optimized windows in MUC6, NXNL1, and BCAM had larger log 𝐿𝑅𝑊 

than that in TREM2, and the optimized windows in MUC6, CADPS2, TYRO3, ADM, 

BCAM, CBLC, and LNP1 captured the variants significantly associated with AD in the 

single-variant-based analysis (Table 4.3). For MUC6, we detected two optimized 

windows, one with a cluster of risk variants and the other with protective variants, both of 

which had larger log 𝐿𝑅𝑊 than that in TREM2. The risk region 1,018,274 - 1,018,379 

contained 4 risk variants including two significant variants rs202193006 (P1485S, 

position: 1,018,348) and rs765785447 (A1474A, position: 1,018,379). Similarly, the 

protective region 1,016,800 - 1,017,015 contained 9 protective variants including the 

significant variant rs373231068 (P1971L, position: 1,016,889) (Table 4.8). For NXNL1, 
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the optimized window 17,565,477 - 17,566,489 were detected, harboring 4 risk rare 

variants with relatively high effect sizes, although these variants did not reach the FDR-

adjusted significance level (Table 4.8). The optimized protective window 45,312,432 - 

45,316,606 in BCAM was observed including two significant protective variants; 

rs28399653 (R77H, position: 45,315,445) and rs28399654 (V196I, position: 45,316,588) 

(Table 4.8). 

 

Discussion 

Based on the assumption that variants located in close proximity within a functional 

protein-coding domain play a similar role in increased or decreased disease susceptibility, 

we identified clusters of rare variants using the scan-statistic-based analysis with an 

optimized window approach. First, we evaluated the scan statistics of TREM2 and 

TOMM40 with different settings for a large genetic region 𝐺, a fixed window size 𝑊, and 

a sliding window size by a sliding window approach. We obtained very similar log 𝐿𝑅𝑊 

values when we specified the whole genome and chromosome as a large genetic region 

𝐺. This may indicate that the scan statistics are comparable between windows in different 

large genetic regions if the 𝐺 is large enough. Second, we optimized windows in the 

scan-statistic-based analysis. Ideally, it would be the best that an optimized window 

covers an entire gene if the gene itself affects a disease and captures one single variant if 

only the variant within the gene is significant. Our optimized window approach 

successfully identified the gene and the single variant in TREM2 and TOMM40, 

respectively. Of the 9 variants existing in the TREM2 gene region in the analysis, 8 

variants were contained in the optimized window. In addition, the p-value from the 
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burden test was smaller than that from SKAT as shown in Table 4.7. These may indicate 

that this optimized window successfully captured variants with the same direction of 

effect, and the entire TREM2 gene is associated with AD susceptibility as consistent to 

the previous report [158]. On the other hand, only one protective variant in TOMM40 was 

identified by the optimized window approach. There existed 3 variants in the TOMM40 

gene region. One was insignificant (OR = 0.71 and p-value = 0.71) and the other was 

rather risk (OR = 8.1 and p-value = 7.70 × 10-4).  

 

Applying the optimized window approach in all genes, we detected two regions in 

MUC6; 1,018,274 - 1,018,379 with a risk effect and 1,016,800 - 1,017,015 with a 

protective effect, both of which were larger log 𝐿𝑅𝑊 than TREM2. That is, risk and 

protective clusters coexist in MUC6. If a region has heterogeneity effect (i.e., including 

both risk and protective variant), the sliding window approach may not be able to detect 

regions unless proper window sizes are specified. The optimized window approach 

demonstrated that there exists two interesting regions in MUC6; one with a cluster of risk 

variants including two significant variants and the other with protective variants 

including one significant variant. The optimized window approach also detected the 

cluster in NXNL1 that captured 4 adjacent risk variants which are in strong LD with each 

other (r2 = 0.87 to 0.98 and D’ = 0.99 to 1). Although these variants were not shown to be 

significantly associated with AD in the single-variant-based test, the log 𝐿𝑅𝑊 of the 

optimized region was larger than that in TREM2, indicating that there is a cluster of 

disease risk variants within this region. The optimized window in BCAM was relatively 

large (the length was about 4kb) that captured 9 variants including two significant 
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protective variants. BCAM is located close to the APOE locus. The pairwise LD values 

were r2 = 0.09 and D’ = 0.46 between two significant protective variants and APOE ε2. 

Thus, the protective effect of BCAM may come from the APOE ε2 protective impact on 

AD as well as TOMM40. 

 

In recent years, the importance of TREM2 has been highlighted due to increased risk for 

AD. Consistent with previous studies [155, 156, 159, 160], the missense variant 

rs75932628 (R47H) in TREM2 was detected as a risk variant of AD in the single-variant-

based analysis. TREM2 located on chromosome 6p21.1 encodes a transmembrane 

receptor primarily expressed in microglia [161, 162], and has been shown to suppress 

inflammatory responses [163]. We optimized a window in which there were 8 risk 

variants with a relatively large effect size, all of which were missense variants except 

rs144250872 (L133L). The two variants rs2234253 (T96K) and rs2234256 (L211P) were 

in perfect LD with each other. The variant rs2234255 (H157Y) had the largest estimated 

OR (OR = 10.48, p-value = 6.50×10-3), showing a MAF of 0.11% in AD cases and 0.01% 

in controls. 

 

The association of rs75932628 (R47H) was replicated in many studies for individuals of 

European ancestry [158, 164-167], while other studies failed to replicate this association 

in East Asian and African American populations [168-171]. The association of the 

variant rs2234255 (H157Y) was found in the study of the Han Chinese [172] but not of 

European populations so far. Also, the variant rs2234256 (L211P) was identified in 

African American [171]. These disparities may be raised because of high variabilities of 



 

92 

 

MAF in the rare variants among different populations. According to Exome Aggregation 

Consortium (ExAC) data, for example, the MAFs are 0.26% in European, 0.088% in 

African American, and 0% in East Asian for rs75932628 (R47H), 0.0030% in European, 

0.059% in African American, and 0.20% in East Asian for rs2234255 (H157Y), and 

0.096% in European, 12.8% in African American, and 0.15% in East Asian for 

rs2234256 (L211P) [173]. Since we extracted individuals of European ancestry based on 

PCs in this study, there may not be enough power to detect rs2234255 (H157Y) in the 

single-variant-based analysis, although the effect size was large. We did identify the 

genetic region (i.e., 41,126,655 - 41,129,252) using the scan-statistic-based analysis with 

an optimized window approach in which potential risk variants previously identified 

across various populations were harbored.  

 

Using the large WES dataset derived from multiple research centers, we demonstrated the 

practicability of the optimized window approach in the scan-statistic-based analysis to 

detect a single variant and a cluster harboring risk or protective variants for AD. We 

identified several candidate genes exhibiting risk for AD and others playing a protective 

role using the optimized window approach. Our results strongly suggest the need for 

more investigation for these novel genes. As more NGS data become available, it is of 

great interest to see whether these findings are replicated in other cohorts of European 

ancestry as well as different populations. We also plan in future studies to examine how 

these mutations change the protein structure and function, and/or whether transgenic mice 

with these mutations exhibit AD-related pathogenesis. 
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Table 4.1. Summary of the major findings in rare variants associated with late-onset 

Alzheimer’s disease 

Gene Chr SNV Position Variant Reference 

BIN1 2 rs138047593 127,808,046 K358R [174] 

UNC5C 4 rs137875858 96,091,431 T835M [175] 

TREM2 6 rs143332484 41,129,207 R62H [158, 176] 

  rs75932628 41,129,252 R47H [155, 156] 

CD2AP 6 rs116754410 47,591,941 K633R [174] 

AKAP9 7 rs144662445 91,709,085 I2546M [177] 

  rs149979685 91,732,110 S3767L [177] 

EPHA1 7 rs202178565 143,095,499 P460L [174] 

SORL1 11 rs117260922 121,367,627 E270K [178] 

  rs143571823 121,429,476 T947M [178] 

TM2D3 15 rs139709573 102,186,966 P155L [179] 

PLCG2 16 rs72824905 81,942,028 P522R [176] 

ABI3 17 rs616338 47,297,297 S209F [176] 

PLD3 19 rs145999145 40,877,595 V232M [180] 

ABCA7 19 rs72973581 1,043,103 G215S [74] 

  rs770510230 1,058,154 E1679X [174] 

Chr = chromosome; SNV = single nucleotide variant 
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Table 4.2. Number of cases/controls and age range in each case-control study of ADSP 

Consortium Study Cases  Controls 

  n Age range  n Age range 

ADGC  4,966 40-99+  3,209 42-99+ 

 ACT 273 69-89  996 68-89 

 ADC 2,417 60-90+  839 64-90+ 

 CHAP 27 68-90+  204 78-90+ 

 EFIGA 160 59-90+  171 42-90+ 

 GDF 111 59-90+  96 77-90+ 

 NIA-LOAD 364 37-90+  111 78-90+ 

 MAP 132 71-90+  283 72-90+ 

 MAYO 250 60-87  99 78-90+ 

 MAYO PD 181 59-89  14 79-90+ 

 MIA 316 56-88  15 78-89 

 MIRAGE 0 -  20 74-90+ 

 NCRAD 160 58-90+  0 - 

 RAS 46 56-88  0 - 

 ROS 144 63-90+  207 67-90+ 

 TARCC 132 60-90+  12 80-89 

 TOR 9 40-84  0 - 

 VAN 210 60-90+  26 79-90+ 

 WHICAP 34 73-90+  116 78-90+ 

       

CHARGE  805 60-99+  1,927 61-99+ 

 ARIC 39 67-89  18 77-85 

 ASPS 121 60-89  5 78-86 

 CHS 251 68-90+  583 76-90+ 

 ERF 45 60-88  0 - 

 FHS 126 65-90+  455 61-90+ 

 RS 223 61-90+  866 76-90+ 

ADSP = Alzheimer's Disease Sequencing Project; ACT =Adult Changes in Thought; 

ADC = NIA Alzheimer Disease Centers; CHAP = Chicago Health and Aging Project; 

EFIGA = Estudio Familiar de la Influencia Genetica en Alzheimer; GDF = Genetic 

Differences; NIA-LOAD = National Institute on Aging (NIA) Late Onset Alzheimer's 

Disease Family Study; MAP = Memory and Aging Project; MAYO = Mayo Clinic; 

MAYO PD = Mayo PD; MIA = University of Miami; MIRAGE = Multi-Institutional 

Research in Alzheimer's Genetic Epidemiology; NCRAD = National Cell Repository for 

Alzheimer's Disease; RAS = University of Washington Families; ROS = Religious 

Orders Study; TARCC = Texas Alzheimer's Research and Care Consortium; TOR = 

University of Toronto; VAN = Vanderbilt University; WHICAP = Washington Heights-

Inwood Columbia Aging Project; ARIC = Atherosclerosis Risk in Communities Study; 

ASPS = Austrian Stroke Prevention Study; CHS = Cardiovascular Health Study; ERF = 

Erasmus Rucphen Family; FHS = Framingham Heart Study; RS = Rotterdam Study 
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Table 4.3. Significantly associated rare coding variants with Alzheimer’s disease assuming a dominant mode of inheritance 

Chr SNV ID Position Gene Alleles a 
MAF (%) 

 No. of subjects 

with minor allele OR P-value b Variant 

Cases Controls  Cases Controls 

3 rs9844083 100,170,628 LNP1 A/G 0.33 0.97  28 76 0.33 1.59×10-7 Q74Q 

6 rs75932628 41,129,252 TREM2 C/T 0.94 0.21  96 21 4.41 4.30×10-12 R47H 

7 rs746999306 122,303,575 CADPS2 A/C 0.35 0.03  35 3 11.31 7.49×10-8 C168G 

11 rs373231068 1,016,889 MUC6 G/A 2.26 4.73  194 380 0.45 4.97×10-19 P1971L 

11 rs202193006 1,018,348 MUC6 G/A 4.38 2.29  434 219 2.00 1.16×10-16 P1485S 

11 rs765785447 1,018,379 MUC6 G/C 3.59 1.90  359 182 1.96 1.41×10-13 A1474A 

11 rs764691516 10,327,875 ADM G/C 0.97 0.32  87 29 3.08 3.10×10-8 R14P 

15 rs149022093 41,862,356 TYRO3 T/C 2.25 1.12  188 92 2.05 1.18×10-8 1382+2T>C 

19 rs3208856 45,296,806 CBLC C/T 2.68 4.15  272 392 0.64 3.35×10-8 H405Y 

19 rs28399653 45,315,445 BCAM G/A 2.47 3.90  249 369 0.62 1.45×10-8 R77H 

19 rs28399654 45,316,588 BCAM G/A 2.45 4.02  248 383 0.60 5.75×10-10 V196I 

19 rs1160983 45,397,229 TOMM40 G/A 1.80 4.34  140 340 0.39 2.12×10-21 S183S 
a Major/minor alleles 
b P-values were calculated by Fisher’s exact test and displayed if significant based on false discovery rate (FDR) adjusted p-value < 

0.05. 

Chr = chromosome; SNV= single nucleotide variant; MAF = minor allele frequency; OR = odds ratio 

 



 

97 

 

Table 4.4. Characteristics of ADSP study subjects (n = 10,031) 

Variable 
AD cases (n = 5,142)  AD controls (n = 4,889) 

n %  n % 

Sex      

 Male 2,226 43.3  1,995 40.8 

 Female 2,916 56.7  2,894 59.2 

Age a      

 65 - 69 506 9.8  12 0.2 

 70 - 74 1,008 19.6  29 0.6 

 75 - 79 1,105 21.5  169 3.5 

 80 - 84 1,041 20.2  1,510 30.9 

 85 - 89 866 16.8  2,197 55.9 

 90 + 616 12.0  972 19.9 

APOE      

 - / - 3,001 58.4  4,189 85.7 

 ε4 / - 2,068 40.2  683 14.0 

 ε4 / ε4 73 1.4  17 0.3 
a Age at the last visit or at death 

ADSP = Alzheimer's Disease Sequencing Project 
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Table 4.5. Scan-statistic (logLRw) for windows determined by a sliding window approach in several different settings, TREM2 and 

TOMM40 

 
Gene 

Window size  Window position 
G logLRw 

 Fixed Sliding  Start End 

Risk effect    

 TREM2 2kb 1kb  41,128,156 41,130,156 Genome 25.42 

       Chromosome 6 25.43 

       Band 6p21.1 24.19 

     41,129,156 41,131,156 Genome 20.27 

       Chromosome 6 20.27 

       Band 6p21.1 19.24 

  5kb 2.5kb  41,125,156 41,130,156 Genome 31.02 

       Chromosome 6 31.03 

       Band 6p21.1 29.57 

     41,127,656 41,132,656 Genome 25.42 

       Chromosome 6 25.43 

       Band 6p21.1 24.19 

  10kb 5kb  41,120,156 41,130,156 Genome 31.01 

       Chromosome 6 31.02 

       Band 6p21.1 29.55 

     41,125,156 41,135,156 Genome 31.02 

       Chromosome 6 31.03 

       Band 6p21.1 29.57 

logLRw = log likelihood ratio for the window  
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Table 4.5. (Continued) 

 
Gene 

Window size  Window position 
G logLRw 

 Fixed Sliding  Start End 

Protective effect    

 TOMM40 2kb 1kb  45,395,468 45,397,468 Genome 48.43 

       Chromosome 19 48.13 

       Band 19q13.32 44.85 

     45,396,468 45,398,468 Genome 48.43 

       Chromosome 19 48.13 

       Band 19q13.32 44.85 

  5kb 2.5kb  45,393,968 45,398,968 Genome 48.43 

       Chromosome 19 48.13 

       Band 19q13.32 44.85 

     45,396,468 45,401,468 Genome 48.43 

       Chromosome 19 48.13 

       Band 19q13.32 44.85 

  10kb 5kb  45,391,468 45,401,468 Genome 38.37 

       Chromosome 19 38.06 

       Band 19q13.32 34.64 

     45,396,468 45,406,468 Genome 40.10 

       Chromosome 19 39.82 

       Band 19q13.32 36.74 

logLRw = log likelihood ratio for the window 
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Table 4.6. Scan-statistic (logLRw) for windows determined by an optimized window 

approach in each large genetic region, TREM2 and TOMM40 

Gene 
Optimized window 

G logLRw 
Start End 

Risk effect     

 TREM2 41,126,655 41,129,252 Genome 31.19 

  41,126,655 41,129,252 Chromosome 6 31.20 

  41,126,655 41,129,252 Band 6p21.1 29.75 

Protective effect     

 TOMM40 45,397,229 45,397,229 Genome 48.43 

  45,397,229 45,397,229 Chromosome 19 48.13 

  45,397,229 45,397,229 Band 19q13.32 44.85 

logLRw = log likelihood ratio for the window 
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Table 4.7. Optimized windows for top 10 genes with a large scan-statistic in risk and protective effects 

Chr 
Optimized window 

Gene logLRw 

Optimized window 

p-value a 
No. of 

subjects 

No. of 

variants in 

the window Start End SKAT Burden 

Risk effect        

 11 1,018,274 1,018,379 MUC6 56.19 1.16×10-16 9.05×10-17 9,664 4 

 19 17,566,477 17,566,489 NXNL1 45.88 7.39×10-7 7.20×10-7 7,679 4 

 6 41,126,655 41,129,252 TREM2 31.19 2.55×10-11 7.22×10-14 9,801 8 

 7 149,482,580 149,520,553 SSPO 21.19 0.18 0.30 2,369 137 

 4 190,903,822 190,903,880 TUBB4Q b 18.59 0.045 0.072 9,175 9 

 17 18,907,029 18,923,180 SLC5A10 17.21 5.18×10-4 4.51×10-4 9,829 8 

 14 74,763,064 74,766,360 ABCD4 16.16 8.48×10-3 8.48×10-3 10,029 4 

 7 122,303,575 122,303,598 CADPS2 16.09 1.93×10-7 1.11×10-7 9,825 2 

 15 41,862,356 41,862,520 TYRO3 14.48 8.12×10-10 1.81×10-8 8,243 3 

 11 10,327,875 10,327,875 ADM 13.68 3.10×10-8 c - 9,020 1 

          

Protective effect        

 11 1,016,800 1,017,015 MUC6 51.62 1.14×10-12 2.00×10-10 6,933 9 

 19 45,397,229 45,397,229 TOMM40 48.43 2.12×10-21 c - 7,978 1 

 19 45,312,432 45,316,606 BCAM 34.95 1.89×10-8 1.00×10-8 8,909 9 

 19 45,296,767 45,297,479 CBLC 24.83 2.66×10-5 4.47×10-6 9,457 6 

 11 55,594,868 55,595,291 OR5L2 22.98 1.98×10-4 9.39×10-5 9,655 7 

 2 89,246,948 89,246,978 IGKV1-5 16.31 2.19×10-3 1.02×10-3 9,561 4 

 19 55,179,184 55,179,217 LILRB4 16.29 6.38×10-5 2.65×10-5 9,774 3 

 6 30,954,438 30,955,218 MUC21 15.71 0.11 0.17 6,702 55 

 3 100,170,589 100,170,628 LNP1 14.92 2.11×10-7 1.02×10-6 7,798 2 

 14 50,799,018 50,857,010 CDKL1 14.61 1.71×10-4 9.19×10-3 7,995 15 
a P-values obtained from the subjects with no missing variants; b Pseudogene; c P-values were calculated by Fisher’s exact test 

logLRw = log likelihood ratio for the window; SKAT = sequence-kernel association test; Burden = the burden test  
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Table 4.8. Single-variant-based association within the optimized windows  

SNV ID Position Alleles a 
MAF (%) 

 
No. of subjects 

with minor allele OR P-value b Variant 

Cases Controls 
 

Cases Controls 

Risk effect          

 11: 1,018,274 - 1,018,379 (MUC6)         

  rs79073076 1,018,274 G/C 0.04 0.01  4 1 3.81 0.38 T1509T 

  rs200240449 1,018,334 C/T 0.27 0.19  27 19 1.35 0.38 T1489T 

  rs202193006 1,018,348 G/A 4.38 2.29  434 219 2.00 1.16×10-16 P1485S 

  rs765785447 1,018,379 G/C 3.59 1.90  359 182 1.96 1.41×10-13 A1474A 

             

 19: 17,566,477 - 17,566,489 (NXNL1)         

  rs773959663 17,566,477 G/C 1.02 0.38   88 32 2.73 4.41×10-7 G206G 

  rs761407534 17,566,481 T/C 0.93 0.33   80 28 2.84 5.46×10-7 E205G 

  rs767189869 17,566,484 T/C 0.75 0.27   71 23 2.84 6.43×10-7 E204G 

  rs750720749 17,566,489 A/C 0.86 0.28   68 23 3.10 6.58×10-6 G203G 

             

 6: 41,126,655 - 41,129,252 (TREM2)         

  rs2234256 41,126,655 A/G 0.21 0.09  22 9 2.33 0.031 L211P 

  rs2234255 41,127,543 G/A 0.11 0.01  11 1 10.48 6.50×10-3 H157Y 

  rs144250872 41,127,613 C/A 0.16 0.10  17 10 1.61 0.25 L133L 

  rs145080901 41,129,078 G/A 0.04 0.02  4 2 1.90 0.69 A105V 

  rs2234253 41,129,105 G/T 0.21 0.09  22 9 2.33 0.031 T96K 

  rs142232675 41,129,133 C/T 0.21 0.09  22 9 2.33 0.031 D87N 

  rs143332484 41,129,207 C/T 1.35 0.90  137 87 1.51 2.88×10-3 R62H 

  rs75932628 41,129,252 C/T 0.94 0.21  96 21 4.41 4.30×10-12 R47H 

A bold SNV and p-value represent the significant variants based on the false discovery rate (FDR)-adjusted significance level. 
a Major/minor alleles, b P-values were calculated by Fisher’s exact test. 

SNV= single nucleotide variant; MAF = minor allele frequency; OR = odds ratio 
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Table 4.8. (Continued) 

SNV ID Position Alleles a 
MAF (%) 

 
No. of subjects 

with minor allele OR P-value b Variant 

Cases Controls 
 

Cases Controls 

Protective effect         

 11: 1,016,800 - 1,017,015 (MUC6)         

  rs199626069 1,016,800 G/A 0.04 0.07  4 7 0.54 0.38 P2001S 

  rs761958882 1,016,801 G/C 0.03 0.06  3 6 0.48 0.33 H2000Q 

  rs756062369 1,016,809 G/T 0.04 0.07  4 7 0.54 0.38 P1998T 

  rs747778866 1,016,818 A/G 0.54 0.97  55 93 0.56 6.33×10-4 Y1995H 

  rs762086454 1,016,835 A/G 0.50 1.02  51 98 0.49 3.09×10-5 F1989S 

  rs76307106 1,016,870 G/A 0.10 0.11  10 10 0.94 1 P1977P 

  rs373231068 1,016,889 G/A 2.26 4.73  194 380 0.45 4.97×10-19 P1971L 

  rs200695483 1,016,957 T/C 0.03 0.03  3 3 0.94 1 R1948R 

  rs767697427 1,017,015 T/G 0.02 0.06  2 6 0.32 0.17 E1929A 

             

 19: 45,312,432 - 45,316,606 (BCAM)         

  rs767090237 45,312,432 G/A 0.02 0.05  2 4 0.47 0.44 L17L 

  rs573141230 45,314,496 GTGCGCT/G 0.08 0.14  8 13 0.58 0.28 R34_L35del 

  rs28399653 45,315,445 G/A 2.47 3.90  249 369 0.62 1.45×10-8 R77H 

  rs3745159 45,315,539 G/A 0.22 0.30  23 29 0.75 0.33 G108G 

  rs144124876 45,315,573 G/A 0.03 0.02  3 2 1.43 1.00 E120K 

  rs200398713 45,315,656 T/A 0.10 0.06  10 6 1.59 0.46 433+8T>A 

  rs143018179 45,315,799 C/G 0.22 0.32  23 31 0.70 0.22 A166A 

  rs28399654 45,316,588 G/A 2.45 4.02  248 383 0.60 5.75×10-10 V196I 

  rs776849980 45,316,606 G/A 0.02 0.07  2 7 0.27 0.10 601+3G>A 

A bold SNV and p-value represent the significant variants based on the false discovery rate (FDR)-adjusted significance level. 
a Major/minor alleles, b P-values were calculated by Fisher’s exact test. 

SNV= single nucleotide variant; MAF = minor allele frequency; OR = odds ratio
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Figure 4.1. Flow diagram of the subjects included in the analyses. 

 

WES = Whole-exome sequencing; ADSP = Alzheimer's Disease Sequencing Project 

  



 

105 

 

 
 
Figure 4.2. First and second principal components plots along with 1000 genome 

reference samples. Block dots indicate individuals in this study. We chose individuals 

within the red dotted circle based on Euclidean distance. 

 

AFR = African; AMR = Admixed American; EAS = East Asian; EUR = European; SAS 

= South Asian 
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Figure 4.3. Manhattan plot of scan-statistic (logLRw) for the optimized windows in each gene.  
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Supplementary Method 1 

Quality control (QC) was performed for each of the variant call formats (VCFs) received 

from two institutions; the Human Genome Sequencing Center at Baylor College of 

Medicine (hereafter, Baylor) in which genotype calling was conducted using Atlas V2 

software [181] and the Broad Institute (hereafter, Broad) in which genotype calling was 

conducted using Genome Analysis Toolkit (GATK)-HaplotypeCaller [182]. Both of the 

VCFs were derived from the same set of BAM file. 

 

Primary QC 

Distinct primary QCs were applied to each of the sets of VCFs due to differences in the 

calling pipelines. For the Broad VCFs, variants that did not have a “PASS” in the 

FILTER field were deleted. For the Baylor VCFs, variants with a low mapping score and 

genotypes that did not have a “PASS”, that had a low read depth, or that had an out-of-

range variant read to total read depth ratio were deleted. Then, monomorphic variants, 

variants with high missing rate (≥ 20%), variants with high read depth (> 500 reads), or 

variants (only for MAF > 0.001) with Hardy-Weinberg equilibrium p-value < 5×10-6 

were deleted.  

 

Concordance check between the Baylor and Broad VCFs 

Variants were compared between the QCed VCFs. The consensus protocol was defined 

as follows. 

(1) Variants in which a different alternative allele was called between the two VCFs 

were excluded. 
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(2) All genotypes in remaining variants that were concordant between the two QCed sets 

of VCFs were included in the final consensus set. 

(3) All genotypes that were discordant between the two QCed sets of VCFs were set to 

missing. 

(4) All genotypes that were present only in the QCed Baylor VCF (but were missing in 

the QCed Broad VCF) were included in the final consensus set. 

(5) Genotypes that were present only in the QCed Broad VCF (but were missing in the 

QCed Baylor VCF) that met a GQ threshold were included in the final consensus set.  

i. The genotype quality score (GQ) threshold was set to the 0.1 percentile 

(genotype-specific) based on genome-wide comparisons of WES and GWAS 

genotypes.  

ii. Genotypes from the Broad VCF that were not present in the Baylor VCF 

were excluded if they had GQ values less than 21 for “0/0” genotypes, less 

than 85 for “0/1” genotypes or less than 36 for “1/1” genotypes. 

 

Second round of variant level QC 

After the consensus genotypes were determined, the same QC protocol as the primary QC 

was applied.  
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Supplementary Method 2 

In order to optimize a window for a genetic region of interest 𝐺 (e.g., chromosome), we 

modified the sliding window approach as follows.  

 

1. We specified a large base genetic region 𝐺 and a window of interest 𝑊 to get it to 

be optimized. 

2. A total of 𝑀 variants in 𝐺 were sorted in an ascending order based on the physical 

position. 

3. We set the 𝑗th window as 𝑤𝑗 containing 𝑚𝑗 variants (𝑚𝑗 < 𝑀). We denoted the 

physical position of the 𝑖th variant as 𝑝𝑖 with 𝑖 = 1, … , 𝑚𝑗. 

4. We then calculated forward log 𝐿𝑅𝑊𝑖𝑗

𝑓
 for each window from 𝑝1 to 𝑝𝑖 with 𝑖 =

1, … , 𝑚𝑗, and obtained arg max
𝑝𝑖

log 𝐿𝑅𝑊𝑖𝑗

𝑓
. 

5. We set the end position of window as 𝑝𝑚𝑗
 and calculated backward log 𝐿𝑅𝑊𝑖𝑗

𝑏  for 

each window from 𝑝𝑖 to 𝑝𝑚𝑗
 with 𝑖 = 2, … , 𝑚𝑗, and obtained arg max

𝑝𝑖

log 𝐿𝑅𝑊𝑖𝑗

𝑏 . 

6. We compared between max log 𝐿𝑅𝑊𝑖𝑗

𝑓
 and max log 𝐿𝑅𝑊𝑖𝑗

𝑏 . 

If max log 𝐿𝑅𝑊𝑖𝑗

𝑓
>  max log 𝐿𝑅𝑊𝑖𝑗

𝑏 , we set log 𝐿𝑅𝑊𝑗
= max log 𝐿𝑅𝑊𝑖𝑗

𝑓
, 

otherwise, log 𝐿𝑅𝑊𝑗
= max log 𝐿𝑅𝑊𝑖𝑗

𝑏 . 

7. We compared log 𝐿𝑅𝑊𝑗−1
 and log 𝐿𝑅𝑊𝑗

. 

If log 𝐿𝑅𝑊𝑗
≤ log 𝐿𝑅𝑊𝑗−1

, we stopped and obtained log 𝐿𝑅𝑊𝑗
 and the 

window as an optimized window so that the length 𝑊𝑗 was minimized. 
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Otherwise, we repeated 3 to 7 until we obtained the maximum value of 

log 𝐿𝑅𝑊 and its window positions. 
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Supplementary Method 3 [63, 64] 

The SKAT aggregates score test statistics assuming that regression coefficient 𝛽𝑗 for the 

𝑗th variant follows an arbitrary distribution with mean 0 and variance 𝑤𝑗
2𝜓, where 𝑤𝑗 is a 

weight that depends on MAF. The SKAT test statistic is expressed as  

𝑄𝑆 = ∑ 𝑤𝑗
2𝑆𝑗

2

𝑚

𝑗=1

= ∑ 𝑤𝑗
2

𝑚

𝑗=1

{∑ 𝑔𝑖𝑗(𝑦𝑖 − �̂�𝑖,0)

𝑛

𝑖=1

}

2

  

where 𝑔𝑖𝑗 is a genotype of the 𝑗th variant for the 𝑖th subject (𝑔𝑖𝑗 = 0, 1, or 2), and �̂�𝑖,0 is 

a estimated probability of the phenotype under the null logistic regression model. The test 

hypothesis 𝐻0: 𝜷 = 0 is equivalent to the hypothesis 𝐻0: 𝜓 = 0. Instead of summing up 

the square of weighted score test statistics, the burden test treats the square of the sum of 

weighed score test statistics defined as  

𝑄𝐵 = (∑ 𝑤𝑗𝑆𝑗

𝑚

𝑗=1

)

2

= {∑ 𝑤𝑗

𝑚

𝑗=1

∑ 𝑔𝑖𝑗(𝑦𝑖 − �̂�𝑖,0)

𝑛

𝑖=1

}

2

 

The SKAT is powerful when both risk and protective variants are mixed, and when a 

small proportion of variants are causal, whereas the burden test is more powerful than 

SKAT when most of the variants are causal and have the same direction of effect [63].  
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CHAPTER FIVE 

Conclusion 

Summary 

Dementia is a complex condition caused by a number of diseases each with an interplay 

of genetic and environmental factors. With the advance of molecular genetic 

technologies, studies have been performed in search of genes influencing dementia 

susceptibility. GWAS have identified many genetic loci that contribute to dementia. 

However, most of the loci have moderate to small estimated effects, often making it 

difficult to reproduce in experimental work such as transgenic mouse models. Ideally, we 

would perform global analyses including information from DNA sequence to levels of 

proteins and metabolites, which is deemed “systems genetics” [121, 123]. Genetic data 

from GWAS can play a part of the role of systems genetics by demonstrating interactions 

among genes and between gene and gene expression by utilizing eQTL mapping. Recent 

sequencing technologies have allowed us not only to increase our resolution of genetic 

associations but also to integrate information for a multi-omics/systems genetics 

approach that includes genomics, epigenomics, transcriptomics, proteomics, 

metabolomics, and microbiomics [183, 184].  

 

Disease associated genetic variants have the potential to be a powerful anchor point for 

unidirectional flow in disease causal networks, in which the genetic variants affect 

downstream layers (i.e., the levels of transcripts, proteins and metabolites). Integrating 

omics layer data with genomic data can help to identify causal SNPs and genes/regions 

and to examine causal pathways leading to disease. The purpose of this dissertation 
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research was to identify SNPs and genes/regions that are potentially causal for dementia, 

especially focusing on HS-Aging and AD using genomic and transcript data. Genomic 

and transcript data were used to conduct three studies: (1) Gene-based association study 

of genes linked to hippocampal sclerosis of aging neuropathology: GRN, TMEM106B, 

ABCC9, and KCNMB2, (2) Translating Alzheimer’s disease risk polymorphisms into 

functional candidates: a survey of IGAP genes, and (3) Identifying regions harboring 

Alzheimer’s disease related rare variants using scan- statistic-based analysis of exome 

sequencing data. The major findings from each of these studies are summarized below. 

 

In the first study, we examined the genetic associations of four candidate genes (GRN, 

TMEM106B, ABCC9, and KCNMB2) for HS-Aging pathology using the large autopsy 

dataset derived from multiple research centers. The important findings are that the 

significant gene-based association between ABCC9 and HS-Aging appeared to be driven 

by a region in which a significant haplotype-based association was found, and that the 

protective haplotype was associated with down-regulation of the ABCC9 expression in 

two independent datasets. The association between ABCC9 and other dementias has 

never been reported. That is, ABCC9 could potentially be a key gene that distinguishes 

HS-Aging from other types of dementia. 

 

The ABCC9 gene encodes a transmembrane protein, a part of an ATP-sensitive potassium 

(KATP) channel complex. KATP channels are widely expressed in various brain regions 

including hippocampus [100, 185]. This channel consists of two distinct subunits: an 

inwardly rectifying K+ channel (Kir6.x) and a regulatory sulfonylurea receptor (SURx) 
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[98]. Two alternatively spliced isoforms of SUR2 (i.e., SUR2A and SUR2B) are encoded 

by ABCC9 differing only in the last 42 C-terminal amino acid residues [100, 186, 187]. 

KATP channels are formed by the combination of Kir6.x and SURx in different tissues; 

Kir6.2/SUR1 in pancreatic β-cells and brain, Kir6.2/SUR2A in heart and skeletal muscle, 

Kir6.2/SUR2B in smooth muscle and brain, and Kir6.1/SUR2B in vascular smooth 

muscle [99, 186]. KATP channels are important for neuroprotection against brain injury. 

When the ATP levels drop due to hypoxia/ischemia, vascular smooth muscle cell KATP 

channels open to increase K+ efflux, voltage-activated calcium channels close to block 

Ca2+ entry, and in turn, vasodilatation is induced for limiting tissue damage [99, 100]. 

Given the critical roles in regulation of vascular tone, KATP channel dysfunction may be 

involved in cardiovascular-related diseases. Leverenz et al. showed that HS-Aging cases 

were more likely to have history of stroke, small vessel disease, and hypertension than 

AD cases [47]. Neltner et al. reported that brains with HS-Aging pathology tended to 

have arteriolosclerosis in multiple cortical and subcortical regions [103]. Therefore, 

cerebrovascular factors might be involved in developing HS-Aging via the KATP channel-

dependent activity [105].  

 

Chapter Three examined the SNPs whish have been reported to be associated with AD. It 

is well known that the ε4 allele of APOE is the major genetic risk factor for late onset of 

AD. There are three apoE isoforms, apoE2 (cys112, cys158), apoE3 (cys112, arg158), 

and apoE4 (arg112, arg158), determined by two SNPs rs429358 (T/C) and rs7412 (C/T), 

both of which are missense variants. These isoforms have different effects on Aβ 

metabolism. The binding ability of the apoE isoforms to Aβ follows the increasing order 
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of apoE2, apoE3 and apoE4, and thus apoE2 and apoE3 inhibit the aggregation and 

enhance the clearance of Aβ compared to apoE4 [33]. A series of genome-wide 

association studies (GWAS) have identified AD-associated SNPs in addition to the 

APOE alleles. Although GWAS have succeeded in revealing numerous susceptibility 

variants for AD, we have relatively little understanding of the functional impact of these 

loci in regards to AD pathogenesis. To understand disease development mechanisms that 

genetic variants are associated with, identifying functional genes and/or variants is an 

important challenge. 

 

In this study, the possible functional effects of the IGAP SNPs on AD were examined 

under two hypotheses: “the IGAP SNP is a proxy of a coding SNP” and “the IGAP SNP 

is a regulatory SNP”. For the first hypothesis, rs2296160 in CR1, rs9270303, rs1049092, 

and rs1049086 in HLA-DRB5, rs2405442 and rs1859788 in ZCWPW1, rs7982 in CLU, 

rs12453 and rs7232 in MS4A6A, and rs3752246 in ABCA7 may be proxies of coding 

SNPs. For the second hypothesis, rs6656401 in CR1, rs10838725 in CELF1, and 

rs8093731 in DSG2 may be regulatory SNPs affecting AD-associated gene expression. 

Investigating the functional role of the suspected and replicated SNPs associated with AD 

is an important next step to understanding the genetic contributions and the functional 

pathways linking AD developmental mechanisms. AD is a complex disease with a strong 

genetic component. However, much of the genetic contribution to AD remains 

unexplained. In future studies, more investigations are needed to investigate how RNA 

and protein levels as well as their interactions are affected by known AD-correlated 

genes. 



 

116 

 

 

Chapter Four presented rare variants associated with AD. Rare variants have become a 

focus in the recent past. Imputed rare variants are typically removed from GWAS 

analyses because of low accuracy of imputation. Recent advances in sequencing 

technologies enable to accurately genotype rare variants. Whole-exome sequencing 

(WES) and whole-genome sequencing (WGS) are ideal approaches to identify novel 

variants and genes associated with complex traits. However, traditional single-variant-

based association tests are underpowered to detect rare variant associations unless sample 

size and/or effect size is very large [62]. Instead of testing single variant individually, 

more powerful and computationally efficient approaches for aggregating the effects of 

rare variants have become a standard approach for association testing. In this study, we 

applied a scan-statistic-based approach and developed an approach to construct optimized 

windows within a gene to find meaningful clusters harboring risk or protective rare 

variants for AD based on the assumption that variants located in close proximity within a 

functional protein-coding domain play a similar role in increased or decreased disease 

susceptibility. We used TREM2 and TOMM40 as highly-replicated positive controls to 

evaluate the scan-statistic-based analysis with a sliding window and an optimized 

window approach. In addition to these positive control genes, we applied the optimized 

window approach in all genes to identify regions that harbor AD associated loci.  

 

We obtained very similar scan statistics when we specified the whole genome and 

chromosome as a large genetic region 𝐺. This may indicate that the scan statistics are 

comparable between windows in different large genetic regions if the 𝐺 is large enough. 
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Ideally, it would be the best that an optimized window covers an entire gene if the gene 

itself affects a disease and captures one single variant if only the variant within the gene 

is significant. Our optimized window approach successfully identified the gene and the 

single variant in TREM2 and TOMM40, respectively. Applying the optimized window 

approach across the genome, we identified several candidate genes exhibiting risk for AD 

and others playing a protective role using the optimized window approach. 

 

Strengths and Limitations 

A major strength of this dissertation is that we evaluated genetic associations of both 

common and rare variants with neurodegenerative diseases using several statistical 

methods. Single-variant-based association tests such as through conventional logistic and 

linear regression are powerful and useful tools to identify associated common variants 

having marginal significant effects on disease. Unlike Mendelian disease, however, 

complex disease is not explained by a single variant in a single gene. As a functional unit, 

a gene/region contains one or more significant SNPs that jointly affect a disease. 

Therefore, gene/region-based association analysis is an effective strategy to identify 

candidate genes/regions contributing to natural variation in a disease, as it combines 

signals from all SNPs within a putative gene/region. Haplotype analysis is also another 

informative approach to handle multiple SNPs. It accounts for not only heterogeneity but 

also possible statistical interactions among SNPs.  

 

There are some limitations. First, all data used in three studies come from multiple 

research centers. Since a large number of observations are required in genetic studies to 
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boost statistical power and to obtain more accurate estimates, collaborative groups 

combine the raw individual data from each study and jointly analyze the pooled data 

(referred to as mega-analysis). In mega-analysis, a concern about “heterogeneity among 

studies” of the same trait has been raised. Sources of heterogeneity among studies 

contains different study designs, trait measurements, ethnic groups, genotyping chips, and 

so on. The statistical methods applied in this dissertation did not take into account 

heterogeneity among studies. Second, dementia diagnoses vary across calendar time and 

research centers. In addition, the accuracy of clinical diagnosis of AD may be hampered 

by difficulty in differentiating AD from other type of dementia or AD mixed with other 

neuropathological conditions [16]. Third, we aggregated data from some resources that 

aid in establishing a confluence within a systems genetics framework. These datasets are 

heterogeneous and can exhibit biases from the respective study designs, analytic 

protocols, and participant pools. Last, we used WES to identify novel rare variants 

associated with AD in the third study. Although WES is a powerful approach for 

discovering mutations in coding regions, it is difficult or impossible to detect important 

elements including variants in non-coding regions, large indels and repeat expansions, 

and exon- or gene-level copy number variations. Therefore, WGS is better than WES to 

capture comprehensive genomic associations. 

 

Future Research 

There are several future research ideas suggested by these dissertation studies. First, we 

incorporated only common SNPs into the gene-based and haplotype-based analyses in the 

first study. Although we showed that the associated haplotype with HS-Aging was also 
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associated with the ABCC9 expression, it is still possible that the common SNP-

association signals come from a synthetic association, i.e., that detectable common SNPs 

reflect the net effect of multiple functional rare variants on a disease. The synthetic 

association hypothesis would suggest that confirmation studies for known SNPs should 

encompass a larger region surrounding the detected common SNP in which possible rare 

variants creating the synthetic association are contained. Second, we need to evaluate 

impacts of allele specific expression on biological function related to AD. We excluded 

monoallelically expressed genes including genes on chromosomes X and Y, and HLA- 

genes in the second study. However, allele specific expression is widely spread across the 

genome, and have important implications in the genotype-phenotype associations [188]. 

Given epigenetic association between DNA methylation in HLA-DRB5 and AD 

pathology [142], we will require more investigations for the association between allele 

specific expression of HLA-DRB5 and AD pathogenesis. Third, the scan-statistic-based 

analysis we used in the third study is performed under the important assumption that each 

risk is independent because it is based on Bernoulli model. That is, the scan-statistic-

based analysis does not take into account LD. If multiple associated variants are in LD, 

using all of them would artificially inflate the test statistic. Therefore, we need to modify 

it as considering LD structure. In addition, we could expand the scan-statistic-based 

analysis for a continuous outcome using a normal distribution model so that biomarkers 

related to AD development would be handled.  

 

  



 

120 

 

REFERENCES 

 

1. Querfurth HW, LaFerla FM: Alzheimer's disease. N Engl J Med 2010, 362: 329-

344 

2. Alzheimer's Association: 2014 Alzheimer's disease facts and figures. 

Alzheimers Dement 2014, 10: e47-92 

3. Alzheimer A: Über eine eigenartige Erkrankung der Hirnrinde. Allgemeine Z 

Psychiatrie Psychisch-Gerichtliche Med 1907, 64: 146-148 

4. Reitz C, Brayne C, Mayeux R: Epidemiology of Alzheimer disease. Nat Rev 

Neurol 2011, 7: 137-152 

5. Selkoe DJ, American College of P, American Physiological S: Alzheimer 

disease: mechanistic understanding predicts novel therapies. Ann Intern Med 

2004, 140: 627-638 

6. Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer's disease: progress 

and problems on the road to therapeutics. Science 2002, 297: 353-356 

7. Donahue JE, Johanson CE: Apolipoprotein E, amyloid-beta, and blood-brain 

barrier permeability in Alzheimer disease. J Neuropathol Exp Neurol 2008, 67: 

261-270 

8. van Es MA, van den Berg LH: Alzheimer's disease beyond APOE. Nat Genet 

2009, 41: 1047-1048 

9. Shen J, Kelleher RJ, 3rd: The presenilin hypothesis of Alzheimer's disease: 

evidence for a loss-of-function pathogenic mechanism. Proc Natl Acad Sci U S 

A 2007, 104: 403-409 

10. Holtzman DM, Morris JC, Goate AM: Alzheimer's disease: the challenge of the 

second century. Sci Transl Med 2011, 3: 77sr71 

11. Guo T, Noble W, Hanger DP: Roles of tau protein in health and disease. Acta 

Neuropathol 2017, 133: 665-704 

12. Wang Y, Mandelkow E: Tau in physiology and pathology. Nat Rev Neurosci 

2016, 17: 5-21 

13. Hanger DP, Noble W: Functional implications of glycogen synthase kinase-3-

mediated tau phosphorylation. Int J Alzheimers Dis 2011, 2011: 352805 

14. Alonso AC, Zaidi T, Grundke-Iqbal I, Iqbal K: Role of abnormally 

phosphorylated tau in the breakdown of microtubules in Alzheimer disease. 

Proc Natl Acad Sci U S A 1994, 91: 5562-5566 

15. Lim A, Tsuang D, Kukull W, Nochlin D, Leverenz J, McCormick W, Bowen J, 

Teri L, Thompson J, Peskind ER et al: Clinico-neuropathological correlation of 

Alzheimer's disease in a community-based case series. J Am Geriatr Soc 1999, 

47: 564-569 

16. Beach TG, Monsell SE, Phillips LE, Kukull W: Accuracy of the clinical 

diagnosis of Alzheimer disease at National Institute on Aging Alzheimer 

Disease Centers, 2005-2010. J Neuropathol Exp Neurol 2012, 71: 266-273 

17. Gaugler JE, Ascher-Svanum H, Roth DL, Fafowora T, Siderowf A, Beach TG: 

Characteristics of patients misdiagnosed with Alzheimer's disease and their 

medication use: an analysis of the NACC-UDS database. BMC Geriatr 2013, 

13: 137 



 

121 

 

18. Ranginwala NA, Hynan LS, Weiner MF, White CL, 3rd: Clinical criteria for the 

diagnosis of Alzheimer disease: still good after all these years. Am J Geriatr 

Psychiatry 2008, 16: 384-388 

19. Brenowitz WD, Monsell SE, Schmitt FA, Kukull WA, Nelson PT: Hippocampal 

sclerosis of aging is a key Alzheimer's disease mimic: clinical-pathologic 

correlations and comparisons with both alzheimer's disease and non-

tauopathic frontotemporal lobar degeneration. J Alzheimers Dis 2014, 39: 

691-702 

20. Zarow C, Sitzer TE, Chui HC: Understanding hippocampal sclerosis in the 

elderly: epidemiology, characterization, and diagnostic issues. Curr Neurol 

Neurosci Rep 2008, 8: 363-370 

21. Pao WC, Dickson DW, Crook JE, Finch NA, Rademakers R, Graff-Radford NR: 

Hippocampal sclerosis in the elderly: genetic and pathologic findings, some 

mimicking Alzheimer disease clinically. Alzheimer Dis Assoc Disord 2011, 25: 

364-368 

22. Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, Dickson 

DW, Duyckaerts C, Frosch MP, Masliah E et al: National Institute on Aging-

Alzheimer's Association guidelines for the neuropathologic assessment of 

Alzheimer's disease. Alzheimers Dement 2012, 8: 1-13 

23. Nelson PT, Smith CD, Abner EL, Wilfred BJ, Wang WX, Neltner JH, Baker M, 

Fardo DW, Kryscio RJ, Scheff SW et al: Hippocampal sclerosis of aging, a 

prevalent and high-morbidity brain disease. Acta Neuropathol 2013, 126: 161-

177 

24. Amador-Ortiz C, Lin WL, Ahmed Z, Personett D, Davies P, Duara R, Graff-

Radford NR, Hutton ML, Dickson DW: TDP-43 immunoreactivity in 

hippocampal sclerosis and Alzheimer's disease. Ann Neurol 2007, 61: 435-445 

25. Nelson PT, Schmitt FA, Lin Y, Abner EL, Jicha GA, Patel E, Thomason PC, 

Neltner JH, Smith CD, Santacruz KS et al: Hippocampal sclerosis in advanced 

age: clinical and pathological features. Brain 2011, 134: 1506-1518 

26. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, Yu 

CE, Jondro PD, Schmidt SD, Wang K et al: Candidate gene for the 

chromosome 1 familial Alzheimer's disease locus. Science 1995, 269: 973-977 

27. Jayadev S, Leverenz JB, Steinbart E, Stahl J, Klunk W, Yu CE, Bird TD: 

Alzheimer's disease phenotypes and genotypes associated with mutations in 

presenilin 2. Brain 2010, 133: 1143-1154 

28. Walker ES, Martinez M, Brunkan AL, Goate A: Presenilin 2 familial 

Alzheimer's disease mutations result in partial loss of function and dramatic 

changes in Abeta 42/40 ratios. J Neurochem 2005, 92: 294-301 

29. Lichtenthaler SF, Wang R, Grimm H, Uljon SN, Masters CL, Beyreuther K: 

Mechanism of the cleavage specificity of Alzheimer's disease gamma-

secretase identified by phenylalanine-scanning mutagenesis of the 

transmembrane domain of the amyloid precursor protein. Proc Natl Acad Sci 

U S A 1999, 96: 3053-3058 

30. Mullan M, Crawford F, Axelman K, Houlden H, Lilius L, Winblad B, Lannfelt L: 

A pathogenic mutation for probable Alzheimer's disease in the APP gene at 

the N-terminus of beta-amyloid. Nat Genet 1992, 1: 345-347 



 

122 

 

31. Nilsberth C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelman K, 

Forsell C, Stenh C, Luthman J, Teplow DB, Younkin SG et al: The 'Arctic' APP 

mutation (E693G) causes Alzheimer's disease by enhanced Abeta protofibril 

formation. Nat Neurosci 2001, 4: 887-893 

32. Mancuso M, Orsucci D, Siciliano G, Murri L: Mitochondria, mitochondrial 

DNA and Alzheimer's disease. What comes first? Curr Alzheimer Res 2008, 5: 

457-468 

33. Tokuda T, Calero M, Matsubara E, Vidal R, Kumar A, Permanne B, Zlokovic B, 

Smith JD, Ladu MJ, Rostagno A et al: Lipidation of apolipoprotein E 

influences its isoform-specific interaction with Alzheimer's amyloid beta 

peptides. Biochem J 2000, 348 Pt 2: 359-365 

34. Cruchaga C, Kauwe JS, Harari O, Jin SC, Cai Y, Karch CM, Benitez BA, Jeng 

AT, Skorupa T, Carrell D et al: GWAS of cerebrospinal fluid tau levels 

identifies risk variants for Alzheimer's disease. Neuron 2013, 78: 256-268 

35. Kauwe JS, Cruchaga C, Bertelsen S, Mayo K, Latu W, Nowotny P, Hinrichs AL, 

Fagan AM, Holtzman DM, Alzheimer's Disease Neuroimaging I et al: Validating 

predicted biological effects of Alzheimer's disease associated SNPs using CSF 

biomarker levels. J Alzheimers Dis 2010, 21: 833-842 

36. Morris JC, Roe CM, Xiong C, Fagan AM, Goate AM, Holtzman DM, Mintun 

MA: APOE predicts amyloid-beta but not tau Alzheimer pathology in 

cognitively normal aging. Ann Neurol 2010, 67: 122-131 

37. Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR: Tau protein 

isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res 

Brain Res Rev 2000, 33: 95-130 

38. Allen M, Kachadoorian M, Quicksall Z, Zou F, Chai HS, Younkin C, Crook JE, 

Pankratz VS, Carrasquillo MM, Krishnan S et al: Association of MAPT 

haplotypes with Alzheimer's disease risk and MAPT brain gene expression 

levels. Alzheimers Res Ther 2014, 6: 39 

39. Pastor P, Moreno F, Clarimon J, Ruiz A, Combarros O, Calero M, Lopez de 

Munain A, Bullido MJ, de Pancorbo MM, Carro E et al: MAPT H1 Haplotype is 

Associated with Late-Onset Alzheimer's Disease Risk in APOEvarepsilon4 

Noncarriers: Results from the Dementia Genetics Spanish Consortium. J 

Alzheimers Dis 2016, 49: 343-352 

40. Myers AJ, Kaleem M, Marlowe L, Pittman AM, Lees AJ, Fung HC, Duckworth J, 

Leung D, Gibson A, Morris CM et al: The H1c haplotype at the MAPT locus is 

associated with Alzheimer's disease. Hum Mol Genet 2005, 14: 2399-2404 

41. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, 

DeStafano AL, Bis JC, Beecham GW, Grenier-Boley B et al: Meta-analysis of 

74,046 individuals identifies 11 new susceptibility loci for Alzheimer's 

disease. Nat Genet 2013, 45: 1452-1458 

42. Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, 

Abraham R, Hamshere ML, Pahwa JS, Moskvina V et al: Common variants at 

ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with 

Alzheimer's disease. Nat Genet 2011, 43: 429-435 

43. Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros 

O, Zelenika D, Bullido MJ, Tavernier B et al: Genome-wide association study 



 

123 

 

identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat 

Genet 2009, 41: 1094-1099 

44. Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, Gallins PJ, 

Buxbaum JD, Jarvik GP, Crane PK et al: Common variants at 

MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset 

Alzheimer's disease. Nat Genet 2011, 43: 436-441 

45. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa 

JS, Moskvina V, Dowzell K, Williams A et al: Genome-wide association study 

identifies variants at CLU and PICALM associated with Alzheimer's disease. 

Nat Genet 2009, 41: 1088-1093 

46. Troncoso JC, Kawas CH, Chang CK, Folstein MF, Hedreen JC: Lack of 

association of the apoE4 allele with hippocampal sclerosis dementia. Neurosci 

Lett 1996, 204: 138-140 

47. Leverenz JB, Agustin CM, Tsuang D, Peskind ER, Edland SD, Nochlin D, 

DiGiacomo L, Bowen JD, McCormick WC, Teri L et al: Clinical and 

neuropathological characteristics of hippocampal sclerosis: a community-

based study. Arch Neurol 2002, 59: 1099-1106 

48. Beecham GW, Hamilton K, Naj AC, Martin ER, Huentelman M, Myers AJ, 

Corneveaux JJ, Hardy J, Vonsattel JP, Younkin SG et al: Genome-wide 

association meta-analysis of neuropathologic features of Alzheimer's disease 

and related dementias. PLoS Genet 2014, 10: e1004606 

49. Dickson DW, Baker M, Rademakers R: Common variant in GRN is a genetic 

risk factor for hippocampal sclerosis in the elderly. Neurodegener Dis 2010, 7: 

170-174 

50. Aoki N, Murray ME, Ogaki K, Fujioka S, Rutherford NJ, Rademakers R, Ross 

OA, Dickson DW: Hippocampal sclerosis in Lewy body disease is a TDP-43 

proteinopathy similar to FTLD-TDP Type A. Acta Neuropathol 2015, 129: 53-

64 

51. Nelson PT, Estus S, Abner EL, Parikh I, Malik M, Neltner JH, Ighodaro E, Wang 

WX, Wilfred BR, Wang LS et al: ABCC9 gene polymorphism is associated 

with hippocampal sclerosis of aging pathology. Acta Neuropathol 2014, 127: 

825-843 

52. Nelson PT, Wang WX, Partch AB, Monsell SE, Valladares O, Ellingson SR, 

Wilfred BR, Naj AC, Wang LS, Kukull WA et al: Reassessment of risk 

genotypes (GRN, TMEM106B, and ABCC9 variants) associated with 

hippocampal sclerosis of aging pathology. J Neuropathol Exp Neurol 2015, 74: 

75-84 

53. Murray ME, Cannon A, Graff-Radford NR, Liesinger AM, Rutherford NJ, Ross 

OA, Duara R, Carrasquillo MM, Rademakers R, Dickson DW: Differential 

clinicopathologic and genetic features of late-onset amnestic dementias. Acta 

Neuropathol 2014, 128: 411-421 

54. Rabbani B, Tekin M, Mahdieh N: The promise of whole-exome sequencing in 

medical genetics. J Hum Genet 2014, 59: 5-15 

55. Majewski J, Schwartzentruber J, Lalonde E, Montpetit A, Jabado N: What can 

exome sequencing do for you? J Med Genet 2011, 48: 580-589 



 

124 

 

56. Sauna ZE, Kimchi-Sarfaty C: Understanding the contribution of synonymous 

mutations to human disease. Nat Rev Genet 2011, 12: 683-691 

57. Mockenhaupt S, Makeyev EV: Non-coding functions of alternative pre-mRNA 

splicing in development. Semin Cell Dev Biol 2015, 47-48: 32-39 

58. Gibson G: Rare and common variants: twenty arguments. Nat Rev Genet 

2012, 13: 135-145 

59. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR: Fast and 

accurate genotype imputation in genome-wide association studies through 

pre-phasing. Nat Genet 2012, 44: 955-959 

60. van Leeuwen EM, Kanterakis A, Deelen P, Kattenberg MV, Genome of the 

Netherlands C, Slagboom PE, de Bakker PI, Wijmenga C, Swertz MA, Boomsma 

DI et al: Population-specific genotype imputations using minimac or 

IMPUTE2. Nat Protoc 2015, 10: 1285-1296 

61. Genomes Project C, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin 

RM, Gibbs RA, Hurles ME, McVean GA: A map of human genome variation 

from population-scale sequencing. Nature 2010, 467: 1061-1073 

62. Asimit J, Zeggini E: Rare variant association analysis methods for complex 

traits. Annu Rev Genet 2010, 44: 293-308 

63. Lee S, Emond MJ, Bamshad MJ, Barnes KC, Rieder MJ, Nickerson DA, Team 

NGESP-ELP, Christiani DC, Wurfel MM, Lin X: Optimal unified approach for 

rare-variant association testing with application to small-sample case-control 

whole-exome sequencing studies. Am J Hum Genet 2012, 91: 224-237 

64. Lee S, Wu MC, Lin X: Optimal tests for rare variant effects in sequencing 

association studies. Biostatistics 2012, 13: 762-775 

65. Hoh J, Ott J: Scan statistics to scan markers for susceptibility genes. Proc Natl 

Acad Sci U S A 2000, 97: 9615-9617 

66. Kulldorff M: A spatial scan statistic. Commun Stat Theory Methods 1997, 26: 

1484-1496 

67. Ionita-Laza I, Makarov V, Consortium AAS, Buxbaum JD: Scan-statistic 

approach identifies clusters of rare disease variants in LRP2, a gene linked 

and associated with autism spectrum disorders, in three datasets. Am J Hum 

Genet 2012, 90: 1002-1013 

68. Shulman JM, Chen K, Keenan BT, Chibnik LB, Fleisher A, Thiyyagura P, 

Roontiva A, McCabe C, Patsopoulos NA, Corneveaux JJ et al: Genetic 

susceptibility for Alzheimer disease neuritic plaque pathology. JAMA Neurol 

2013, 70: 1150-1157 

69. Biffi A, Anderson CD, Desikan RS, Sabuncu M, Cortellini L, Schmansky N, Salat 

D, Rosand J, Alzheimer's Disease Neuroimaging I: Genetic variation and 

neuroimaging measures in Alzheimer disease. Arch Neurol 2010, 67: 677-685 

70. Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M, 

Bis JC, Smith AV, Carassquillo MM, Lambert JC et al: Genome-wide analysis 

of genetic loci associated with Alzheimer disease. JAMA 2010, 303: 1832-1840 

71. Shuai P, Liu Y, Lu W, Liu Q, Li T, Gong B: Genetic associations of CLU 

rs9331888 polymorphism with Alzheimer's disease: A meta-analysis. 

Neurosci Lett 2015, 591: 160-165 



 

125 

 

72. Huang KL, Marcora E, Pimenova AA, Di Narzo AF, Kapoor M, Jin SC, Harari O, 

Bertelsen S, Fairfax BP, Czajkowski J et al: A common haplotype lowers PU.1 

expression in myeloid cells and delays onset of Alzheimer's disease. Nat 

Neurosci 2017, 20: 1052-1061 

73. Wang Z, Lei H, Zheng M, Li Y, Cui Y, Hao F: Meta-analysis of the Association 

between Alzheimer Disease and Variants in GAB2, PICALM, and SORL1. 

Mol Neurobiol 2016, 53: 6501-6510 

74. Sassi C, Nalls MA, Ridge PG, Gibbs JR, Ding J, Lupton MK, Troakes C, Lunnon 

K, Al-Sarraj S, Brown KS et al: ABCA7 p.G215S as potential protective factor 

for Alzheimer's disease. Neurobiol Aging 2016, 46: 235 e231-239 

75. Corey-Bloom J, Sabbagh MN, Bondi MW, Hansen L, Alford MF, Masliah E, 

Thal LJ: Hippocampal sclerosis contributes to dementia in the elderly. 

Neurology 1997, 48: 154-160 

76. Zarow C, Weiner MW, Ellis WG, Chui HC: Prevalence, laterality, and 

comorbidity of hippocampal sclerosis in an autopsy sample. Brain Behav 

2012, 2: 435-442 

77. Dickson DW, Davies P, Bevona C, Van Hoeven KH, Factor SM, Grober E, 

Aronson MK, Crystal HA: Hippocampal sclerosis: a common pathological 

feature of dementia in very old (> or = 80 years of age) humans. Acta 

Neuropathol 1994, 88: 212-221 

78. Nelson PT, Trojanowski JQ, Abner EL, Al-Janabi OM, Jicha GA, Schmitt FA, 

Smith CD, Fardo DW, Wang WX, Kryscio RJ et al: "New Old Pathologies": 

AD, PART, and Cerebral Age-Related TDP-43 With Sclerosis (CARTS). J 

Neuropathol Exp Neurol 2016, 75: 482-498 

79. Pickering-Brown SM, Rollinson S, Du Plessis D, Morrison KE, Varma A, 

Richardson AM, Neary D, Snowden JS, Mann DM: Frequency and clinical 

characteristics of progranulin mutation carriers in the Manchester 

frontotemporal lobar degeneration cohort: comparison with patients with 

MAPT and no known mutations. Brain 2008, 131: 721-731 

80. Rademakers R, Eriksen JL, Baker M, Robinson T, Ahmed Z, Lincoln SJ, Finch N, 

Rutherford NJ, Crook RJ, Josephs KA et al: Common variation in the miR-659 

binding-site of GRN is a major risk factor for TDP43-positive 

frontotemporal dementia. Hum Mol Genet 2008, 17: 3631-3642 

81. Rutherford NJ, Carrasquillo MM, Li M, Bisceglio G, Menke J, Josephs KA, Parisi 

JE, Petersen RC, Graff-Radford NR, Younkin SG et al: TMEM106B risk 

variant is implicated in the pathologic presentation of Alzheimer disease. 

Neurology 2012, 79: 717-718 

82. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, 

Sklar P, de Bakker PI, Daly MJ et al: PLINK: a tool set for whole-genome 

association and population-based linkage analyses. Am J Hum Genet 2007, 81: 

559-575 

83. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D: 

Principal components analysis corrects for stratification in genome-wide 

association studies. Nat Genet 2006, 38: 904-909 

84. 1000 Genomes Project Consortium: A map of human genome variation from 

population-scale sequencing. Nature 2010, 467: 1061-1073 



 

126 

 

85. Wickham H: ggplot2 : elegant graphics for data analysis. New York ; London: 

Springer Science + Business Media; 2009. 

86. Li MX, Gui HS, Kwan JS, Sham PC: GATES: a rapid and powerful gene-

based association test using extended Simes procedure. Am J Hum Genet 2011, 

88: 283-293 

87. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler 

D: The human genome browser at UCSC. Genome Res 2002, 12: 996-1006 

88. Nelson PT, Head E, Schmitt FA, Davis PR, Neltner JH, Jicha GA, Abner EL, 

Smith CD, Van Eldik LJ, Kryscio RJ et al: Alzheimer's disease is not "brain 

aging": neuropathological, genetic, and epidemiological human studies. Acta 

Neuropathol 2011, 121: 571-587 

89. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M, 

Abecasis GR, Willer CJ: LocusZoom: regional visualization of genome-wide 

association scan results. Bioinformatics 2010, 26: 2336-2337 

90. Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization of 

LD and haplotype maps. Bioinformatics 2005, 21: 263-265 

91. Sinnwell JP, Schaid DJ: haplo.stats: Statistical Analysis of Haplotypes with 

Traits and Covariates when Linkage Phase is Ambiguous. In., R package 

version 1.7.7 edn; 2016. 

92. Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA: Score tests for 

association between traits and haplotypes when linkage phase is ambiguous. 

Am J Hum Genet 2002, 70: 425-434 

93. Hernandez DG, Nalls MA, Moore M, Chong S, Dillman A, Trabzuni D, Gibbs 

JR, Ryten M, Arepalli S, Weale ME et al: Integration of GWAS SNPs and 

tissue specific expression profiling reveal discrete eQTLs for human traits in 

blood and brain. Neurobiol Dis 2012, 47: 20-28 

94. Trabzuni D, Ryten M, Walker R, Smith C, Imran S, Ramasamy A, Weale ME, 

Hardy J: Quality control parameters on a large dataset of regionally dissected 

human control brains for whole genome expression studies. J Neurochem 

2011, 119: 275-282 

95. Das S, Forer L, Schonherr S, Sidore C, Locke AE, Kwong A, Vrieze SI, Chew 

EY, Levy S, McGue M et al: Next-generation genotype imputation service and 

methods. Nat Genet 2016, 48: 1284-1287 

96. Loh PR, Danecek P, Palamara PF, Fuchsberger C, Y AR, H KF, Schoenherr S, 

Forer L, McCarthy S, Abecasis GR et al: Reference-based phasing using the 

Haplotype Reference Consortium panel. Nat Genet 2016, 48: 1443-1448 

97. Yang J, Lee SH, Goddard ME, Visscher PM: GCTA: a tool for genome-wide 

complex trait analysis. Am J Hum Genet 2011, 88: 76-82 

98. Quast U, Stephan D, Bieger S, Russ U: The impact of ATP-sensitive K+ 

channel subtype selectivity of insulin secretagogues for the coronary 

vasculature and the myocardium. Diabetes 2004, 53 Suppl 3: S156-164 

99. Sun XL, Hu G: ATP-sensitive potassium channels: a promising target for 

protecting neurovascular unit function in stroke. Clin Exp Pharmacol Physiol 

2010, 37: 243-252 

100. Sun HS, Feng ZP: Neuroprotective role of ATP-sensitive potassium channels 

in cerebral ischemia. Acta Pharmacol Sin 2013, 34: 24-32 



 

127 

 

101. Miki T, Suzuki M, Shibasaki T, Uemura H, Sato T, Yamaguchi K, Koseki H, 

Iwanaga T, Nakaya H, Seino S: Mouse model of Prinzmetal angina by 

disruption of the inward rectifier Kir6.1. Nat Med 2002, 8: 466-472 

102. Chutkow WA, Pu J, Wheeler MT, Wada T, Makielski JC, Burant CF, McNally 

EM: Episodic coronary artery vasospasm and hypertension develop in the 

absence of Sur2 K(ATP) channels. J Clin Invest 2002, 110: 203-208 

103. Neltner JH, Abner EL, Baker S, Schmitt FA, Kryscio RJ, Jicha GA, Smith CD, 

Hammack E, Kukull WA, Brenowitz WD et al: Arteriolosclerosis that affects 

multiple brain regions is linked to hippocampal sclerosis of ageing. Brain 

2014, 137: 255-267 

104. Leon Guerrero CR, Pathak S, Grange DK, Singh GK, Nichols CG, Lee JM, Vo 

KD: Neurologic and neuroimaging manifestations of Cantu syndrome: A case 

series. Neurology 2016, 87: 270-276 

105. Nelson PT, Jicha GA, Wang WX, Ighodaro E, Artiushin S, Nichols CG, Fardo 

DW: ABCC9/SUR2 in the brain: Implications for hippocampal sclerosis of 

aging and a potential therapeutic target. Ageing Res Rev 2015, 24: 111-125 

106. Nelson PT, Katsumata Y, Nho K, Artiushin SC, Jicha GA, Wang WX, Abner EL, 

Saykin AJ, Kukull WA, Alzheimer's Disease Neuroimaging I et al: Genomics 

and CSF analyses implicate thyroid hormone in hippocampal sclerosis of 

aging. Acta Neuropathol 2016, 132: 841-858 

107. Rieben C, Segna D, da Costa BR, Collet TH, Chaker L, Aubert CE, Baumgartner 

C, Almeida OP, Hogervorst E, Trompet S et al: Subclinical Thyroid 

Dysfunction and the Risk of Cognitive Decline: a Meta-Analysis of 

Prospective Cohort Studies. J Clin Endocrinol Metab 2016, 101: 4945-4954 

108. Annerbo S, Lokk J: A clinical review of the association of thyroid stimulating 

hormone and cognitive impairment. ISRN Endocrinol 2013, 2013: 856017 

109. Pasqualetti G, Pagano G, Rengo G, Ferrara N, Monzani F: Subclinical 

Hypothyroidism and Cognitive Impairment: Systematic Review and Meta-

Analysis. J Clin Endocrinol Metab 2015, 100: 4240-4248 

110. Sara JD, Zhang M, Gharib H, Lerman LO, Lerman A: Hypothyroidism Is 

Associated With Coronary Endothelial Dysfunction in Women. J Am Heart 

Assoc 2015, 4: e002225 

111. Delitala AP, Orru M, Filigheddu F, Pilia MG, Delitala G, Ganau A, Saba PS, 

Decandia F, Scuteri A, Marongiu M et al: Serum free thyroxine levels are 

positively associated with arterial stiffness in the SardiNIA study. Clin 

Endocrinol (Oxf) 2015, 82: 592-597 

112. Gao CX, Yang B, Guo Q, Wei LH, Tian LM: High thyroid-stimulating 

hormone level is associated with the risk of developing atherosclerosis in 

subclinical hypothyroidism. Horm Metab Res 2015, 47: 220-224 

113. Van Deerlin VM, Sleiman PM, Martinez-Lage M, Chen-Plotkin A, Wang LS, 

Graff-Radford NR, Dickson DW, Rademakers R, Boeve BF, Grossman M et al: 

Common variants at 7p21 are associated with frontotemporal lobar 

degeneration with TDP-43 inclusions. Nat Genet 2010, 42: 234-239 

114. Yu L, De Jager PL, Yang J, Trojanowski JQ, Bennett DA, Schneider JA: The 

TMEM106B locus and TDP-43 pathology in older persons without FTLD. 

Neurology 2015, 84: 927-934 



 

128 

 

115. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, 

Bruce J, Schuck T, Grossman M, Clark CM et al: Ubiquitinated TDP-43 in 

frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 

2006, 314: 130-133 

116. Nicholson AM, Finch NA, Wojtas A, Baker MC, Perkerson RB, 3rd, Castanedes-

Casey M, Rousseau L, Benussi L, Binetti G, Ghidoni R et al: TMEM106B 

p.T185S regulates TMEM106B protein levels: implications for 

frontotemporal dementia. J Neurochem 2013, 126: 781-791 

117. Ighodaro ET, Jicha GA, Schmitt FA, Neltner JH, Abner EL, Kryscio RJ, Smith 

CD, Duplessis T, Anderson S, Patel E et al: Hippocampal Sclerosis of Aging 

Can Be Segmental: Two Cases and Review of the Literature. J Neuropathol 

Exp Neurol 2015, 74: 642-652 

118. Wu RS, Marx SO: The BK potassium channel in the vascular smooth muscle 

and kidney: alpha- and beta-subunits. Kidney Int 2010, 78: 963-974 

119. Wallner M, Meera P, Toro L: Molecular basis of fast inactivation in voltage 

and Ca2+-activated K+ channels: a transmembrane beta-subunit homolog. 

Proc Natl Acad Sci U S A 1999, 96: 4137-4142 

120. Hicks GA, Marrion NV: Ca2+-dependent inactivation of large conductance 

Ca2+-activated K+ (BK) channels in rat hippocampal neurones produced by 

pore block from an associated particle. J Physiol 1998, 508 ( Pt 3): 721-734 

121. Civelek M, Lusis AJ: Systems genetics approaches to understand complex 

traits. Nat Rev Genet 2014, 15: 34-48 

122. Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, Guhathakurta D, Sieberts SK, 

Monks S, Reitman M, Zhang C et al: An integrative genomics approach to 

infer causal associations between gene expression and disease. Nat Genet 

2005, 37: 710-717 

123. MacLellan WR, Wang Y, Lusis AJ: Systems-based approaches to 

cardiovascular disease. Nat Rev Cardiol 2012, 9: 172-184 

124. Katsumata Y, Nelson PT, Ellingson SR, Fardo DW: Gene-based association 

study of genes linked to hippocampal sclerosis of aging neuropathology: 

GRN, TMEM106B, ABCC9, and KCNMB2. Neurobiol Aging 2017, 53: 193 

e117-193 e125 

125. Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A, Niedzielko 

TL, Schneider LE, Mastroeni D, Caselli R et al: Alzheimer's disease is 

associated with reduced expression of energy metabolism genes in posterior 

cingulate neurons. Proc Natl Acad Sci U S A 2008, 105: 4441-4446 

126. Ng PC, Henikoff S: SIFT: Predicting amino acid changes that affect protein 

function. Nucleic Acids Res 2003, 31: 3812-3814 

127. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, 

Kondrashov AS, Sunyaev SR: A method and server for predicting damaging 

missense mutations. Nat Methods 2010, 7: 248-249 

128. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical 

and powerful approach to multiple testing. J R Stat Soc Ser A Stat Soc 1995, 

57: 289–300 

129. Khera R, Das N: Complement Receptor 1: disease associations and 

therapeutic implications. Mol Immunol 2009, 46: 761-772 



 

129 

 

130. Rogers J, Li R, Mastroeni D, Grover A, Leonard B, Ahern G, Cao P, Kolody H, 

Vedders L, Kolb WP et al: Peripheral clearance of amyloid beta peptide by 

complement C3-dependent adherence to erythrocytes. Neurobiol Aging 2006, 

27: 1733-1739 

131. Bralten J, Franke B, Arias-Vasquez A, Heister A, Brunner HG, Fernandez G, 

Rijpkema M: CR1 genotype is associated with entorhinal cortex volume in 

young healthy adults. Neurobiol Aging 2011, 32: 2106 e2107-2111 

132. Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, Fernhoff NB, 

Mulinyawe SB, Bohlen CJ, Adil A, Tucker A et al: New tools for studying 

microglia in the mouse and human CNS. Proc Natl Acad Sci U S A 2016, 113: 

E1738-1746 

133. Ma J, Yu JT, Tan L: MS4A Cluster in Alzheimer's Disease. Mol Neurobiol 

2015, 51: 1240-1248 

134. Marambaud P, Dreses-Werringloer U, Vingtdeux V: Calcium signaling in 

neurodegeneration. Mol Neurodegener 2009, 4: 20 

135. LaFerla FM: Calcium dyshomeostasis and intracellular signalling in 

Alzheimer's disease. Nat Rev Neurosci 2002, 3: 862-872 

136. Desikan RS, Thompson WK, Holland D, Hess CP, Brewer JB, Zetterberg H, 

Blennow K, Andreassen OA, McEvoy LK, Hyman BT et al: The role of 

clusterin in amyloid-beta-associated neurodegeneration. JAMA Neurol 2014, 

71: 180-187 

137. Yu JT, Tan L: The role of clusterin in Alzheimer's disease: pathways, 

pathogenesis, and therapy. Mol Neurobiol 2012, 45: 314-326 

138. Shannan B, Seifert M, Boothman DA, Tilgen W, Reichrath J: Clusterin and 

DNA repair: a new function in cancer for a key player in apoptosis and cell 

cycle control. J Mol Histol 2006, 37: 183-188 

139. Ling IF, Bhongsatiern J, Simpson JF, Fardo DW, Estus S: Genetics of clusterin 

isoform expression and Alzheimer's disease risk. PLoS One 2012, 7: e33923 

140. Gimelbrant A, Hutchinson JN, Thompson BR, Chess A: Widespread 

monoallelic expression on human autosomes. Science 2007, 318: 1136-1140 

141. Chess A: Mechanisms and consequences of widespread random monoallelic 

expression. Nat Rev Genet 2012, 13: 421-428 

142. Yu L, Chibnik LB, Srivastava GP, Pochet N, Yang J, Xu J, Kozubek J, Obholzer 

N, Leurgans SE, Schneider JA et al: Association of Brain DNA methylation in 

SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 with pathological 

diagnosis of Alzheimer disease. JAMA Neurol 2015, 72: 15-24 

143. Kim WS, Guillemin GJ, Glaros EN, Lim CK, Garner B: Quantitation of ATP-

binding cassette subfamily-A transporter gene expression in primary human 

brain cells. Neuroreport 2006, 17: 891-896 

144. Chan SL, Kim WS, Kwok JB, Hill AF, Cappai R, Rye KA, Garner B: ATP-

binding cassette transporter A7 regulates processing of amyloid precursor 

protein in vitro. J Neurochem 2008, 106: 793-804 

145. Kim WS, Li H, Ruberu K, Chan S, Elliott DA, Low JK, Cheng D, Karl T, Garner 

B: Deletion of Abca7 increases cerebral amyloid-beta accumulation in the 

J20 mouse model of Alzheimer's disease. J Neurosci 2013, 33: 4387-4394 



 

130 

 

146. Gautel M, Zuffardi O, Freiburg A, Labeit S: Phosphorylation switches specific 

for the cardiac isoform of myosin binding protein-C: a modulator of cardiac 

contraction? EMBO J 1995, 14: 1952-1960 

147. Ng D, Pitcher GM, Szilard RK, Sertie A, Kanisek M, Clapcote SJ, Lipina T, Kalia 

LV, Joo D, McKerlie C et al: Neto1 is a novel CUB-domain NMDA receptor-

interacting protein required for synaptic plasticity and learning. PLoS Biol 

2009, 7: e41 

148. Shin SM, Zhang N, Hansen J, Gerges NZ, Pak DT, Sheng M, Lee SH: GKAP 

orchestrates activity-dependent postsynaptic protein remodeling and 

homeostatic scaling. Nat Neurosci 2012, 15: 1655-1666 

149. Voglis G, Tavernarakis N: The role of synaptic ion channels in synaptic 

plasticity. EMBO Rep 2006, 7: 1104-1110 

150. Fusi S, Drew PJ, Abbott LF: Cascade models of synaptically stored memories. 

Neuron 2005, 45: 599-611 

151. Kandel ER: The molecular biology of memory storage: a dialogue between 

genes and synapses. Science 2001, 294: 1030-1038 

152. Maher B: Personal genomes: The case of the missing heritability. Nature 2008, 

456: 18-21 

153. Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, Nadeau JH: Missing 

heritability and strategies for finding the underlying causes of complex 

disease. Nat Rev Genet 2010, 11: 446-450 

154. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, 

McCarthy MI, Ramos EM, Cardon LR, Chakravarti A et al: Finding the missing 

heritability of complex diseases. Nature 2009, 461: 747-753 

155. Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, 

Bjornsson S, Huttenlocher J, Levey AI, Lah JJ et al: Variant of TREM2 

associated with the risk of Alzheimer's disease. N Engl J Med 2013, 368: 107-

116 

156. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, 

Cruchaga C, Sassi C, Kauwe JS, Younkin S et al: TREM2 variants in 

Alzheimer's disease. N Engl J Med 2013, 368: 117-127 

157. Kulldorff M: Scan Statistics for Geographical Disease Surveillance: An 

Overview. In: Spatial and Syndromic Surveillance for Public Health. Chichester, 

UK: John Wiley & Sons, Ltd; 2005. 

158. Jin SC, Benitez BA, Karch CM, Cooper B, Skorupa T, Carrell D, Norton JB, Hsu 

S, Harari O, Cai Y et al: Coding variants in TREM2 increase risk for 

Alzheimer's disease. Hum Mol Genet 2014, 23: 5838-5846 

159. Finelli D, Rollinson S, Harris J, Jones M, Richardson A, Gerhard A, Snowden J, 

Mann D, Pickering-Brown S: TREM2 analysis and increased risk of 

Alzheimer's disease. Neurobiol Aging 2015, 36: 546 e549-513 

160. Slattery CF, Beck JA, Harper L, Adamson G, Abdi Z, Uphill J, Campbell T, 

Druyeh R, Mahoney CJ, Rohrer JD et al: R47H TREM2 variant increases risk 

of typical early-onset Alzheimer's disease but not of prion or frontotemporal 

dementia. Alzheimers Dement 2014, 10: 602-608 e604 



 

131 

 

161. Bouchon A, Hernandez-Munain C, Cella M, Colonna M: A DAP12-mediated 

pathway regulates expression of CC chemokine receptor 7 and maturation of 

human dendritic cells. J Exp Med 2001, 194: 1111-1122 

162. Bouchon A, Dietrich J, Colonna M: Cutting edge: inflammatory responses can 

be triggered by TREM-1, a novel receptor expressed on neutrophils and 

monocytes. J Immunol 2000, 164: 4991-4995 

163. Gao L, Jiang T, Yao X, Yu L, Yang X, Li Y: TREM2 and the Progression of 

Alzheimer's Disease. Curr Neurovasc Res 2017, 14: 177-183 

164. Benitez BA, Cooper B, Pastor P, Jin SC, Lorenzo E, Cervantes S, Cruchaga C: 

TREM2 is associated with the risk of Alzheimer's disease in Spanish 

population. Neurobiol Aging 2013, 34: 1711 e1715-1717 

165. Pottier C, Wallon D, Rousseau S, Rovelet-Lecrux A, Richard AC, Rollin-Sillaire 

A, Frebourg T, Campion D, Hannequin D: TREM2 R47H variant as a risk 

factor for early-onset Alzheimer's disease. J Alzheimers Dis 2013, 35: 45-49 

166. Cuyvers E, Bettens K, Philtjens S, Van Langenhove T, Gijselinck I, van der Zee J, 

Engelborghs S, Vandenbulcke M, Van Dongen J, Geerts N et al: Investigating 

the role of rare heterozygous TREM2 variants in Alzheimer's disease and 

frontotemporal dementia. Neurobiol Aging 2014, 35: 726 e711-729 

167. Ruiz A, Dols-Icardo O, Bullido MJ, Pastor P, Rodriguez-Rodriguez E, Lopez de 

Munain A, de Pancorbo MM, Perez-Tur J, Alvarez V, Antonell A et al: Assessing 

the role of the TREM2 p.R47H variant as a risk factor for Alzheimer's 

disease and frontotemporal dementia. Neurobiol Aging 2014, 35: 444 e441-444 

168. Jiao B, Liu X, Tang B, Hou L, Zhou L, Zhang F, Zhou Y, Guo J, Yan X, Shen L: 

Investigation of TREM2, PLD3, and UNC5C variants in patients with 

Alzheimer's disease from mainland China. Neurobiol Aging 2014, 35: 2422 

e2429-2422 e2411 

169. Yu JT, Jiang T, Wang YL, Wang HF, Zhang W, Hu N, Tan L, Sun L, Tan MS, 

Zhu XC et al: Triggering receptor expressed on myeloid cells 2 variant is rare 

in late-onset Alzheimer's disease in Han Chinese individuals. Neurobiol Aging 

2014, 35: 937 e931-933 

170. Miyashita A, Wen Y, Kitamura N, Matsubara E, Kawarabayashi T, Shoji M, 

Tomita N, Furukawa K, Arai H, Asada T et al: Lack of genetic association 

between TREM2 and late-onset Alzheimer's disease in a Japanese 

population. J Alzheimers Dis 2014, 41: 1031-1038 

171. Jin SC, Carrasquillo MM, Benitez BA, Skorupa T, Carrell D, Patel D, Lincoln S, 

Krishnan S, Kachadoorian M, Reitz C et al: TREM2 is associated with 

increased risk for Alzheimer's disease in African Americans. Mol 

Neurodegener 2015, 10: 19 

172. Jiang T, Tan L, Chen Q, Tan MS, Zhou JS, Zhu XC, Lu H, Wang HF, Zhang YD, 

Yu JT: A rare coding variant in TREM2 increases risk for Alzheimer's 

disease in Han Chinese. Neurobiol Aging 2016, 42: 217 e211-213 

173. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, 

O'Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB et al: Analysis of protein-

coding genetic variation in 60,706 humans. Nature 2016, 536: 285-291 

174. Vardarajan BN, Ghani M, Kahn A, Sheikh S, Sato C, Barral S, Lee JH, Cheng R, 

Reitz C, Lantigua R et al: Rare coding mutations identified by sequencing of 



 

132 

 

Alzheimer disease genome-wide association studies loci. Ann Neurol 2015, 78: 

487-498 

175. Wetzel-Smith MK, Hunkapiller J, Bhangale TR, Srinivasan K, Maloney JA, 

Atwal JK, Sa SM, Yaylaoglu MB, Foreman O, Ortmann W et al: A rare 

mutation in UNC5C predisposes to late-onset Alzheimer's disease and 

increases neuronal cell death. Nat Med 2014, 20: 1452-1457 

176. Sims R, van der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N, Jakobsdottir J, 

Kunkle BW, Boland A, Raybould R, Bis JC et al: Rare coding variants in 

PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity 

in Alzheimer's disease. Nat Genet 2017, 49: 1373-1384 

177. Logue MW, Schu M, Vardarajan BN, Farrell J, Bennett DA, Buxbaum JD, Byrd 

GS, Ertekin-Taner N, Evans D, Foroud T et al: Two rare AKAP9 variants are 

associated with Alzheimer's disease in African Americans. Alzheimers Dement 

2014, 10: 609-618 e611 

178. Vardarajan BN, Zhang Y, Lee JH, Cheng R, Bohm C, Ghani M, Reitz C, Reyes-

Dumeyer D, Shen Y, Rogaeva E et al: Coding mutations in SORL1 and 

Alzheimer disease. Ann Neurol 2015, 77: 215-227 

179. Jakobsdottir J, van der Lee SJ, Bis JC, Chouraki V, Li-Kroeger D, Yamamoto S, 

Grove ML, Naj A, Vronskaya M, Salazar JL et al: Rare Functional Variant in 

TM2D3 is Associated with Late-Onset Alzheimer's Disease. PLoS Genet 2016, 

12: e1006327 

180. Cruchaga C, Karch CM, Jin SC, Benitez BA, Cai Y, Guerreiro R, Harari O, 

Norton J, Budde J, Bertelsen S et al: Rare coding variants in the phospholipase 

D3 gene confer risk for Alzheimer's disease. Nature 2014, 505: 550-554 

181. Challis D, Yu J, Evani US, Jackson AR, Paithankar S, Coarfa C, Milosavljevic A, 

Gibbs RA, Yu F: An integrative variant analysis suite for whole exome next-

generation sequencing data. BMC Bioinformatics 2012, 13: 8 

182. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, 

Garimella K, Altshuler D, Gabriel S, Daly M et al: The Genome Analysis 

Toolkit: a MapReduce framework for analyzing next-generation DNA 

sequencing data. Genome Res 2010, 20: 1297-1303 

183. Yao Z, Petschnigg J, Ketteler R, Stagljar I: Application guide for omics 

approaches to cell signaling. Nat Chem Biol 2015, 11: 387-397 

184. Hasin Y, Seldin M, Lusis A: Multi-omics approaches to disease. Genome Biol 

2017, 18: 83 

185. Zawar C, Plant TD, Schirra C, Konnerth A, Neumcke B: Cell-type specific 

expression of ATP-sensitive potassium channels in the rat hippocampus. J 

Physiol 1999, 514 ( Pt 2): 327-341 

186. Shi NQ, Ye B, Makielski JC: Function and distribution of the SUR isoforms 

and splice variants. J Mol Cell Cardiol 2005, 39: 51-60 

187. Nichols CG, Singh GK, Grange DK: KATP channels and cardiovascular 

disease: suddenly a syndrome. Circ Res 2013, 112: 1059-1072 

188. Palacios R, Gazave E, Goni J, Piedrafita G, Fernando O, Navarro A, Villoslada P: 

Allele-specific gene expression is widespread across the genome and 

biological processes. PLoS One 2009, 4: e4150 

  



 

133 

 

VITA 

 

EDUCATION 

Ph.D. Social Medicine, Hokkaido University, Hokkaido, Japan December 2005 

M.S.  Physics, Kanazawa University, Ishikawa, Japan March 1997 

B.S.  Physics, Kanazawa University, Ishikawa, Japan March 1995 

 

PROFESSIONAL EXPERIENCE 

Graduate Research Assistant September 2013 – December 2017 

Department of Biostatistics, University of Kentucky, KY, USA 

Visiting Researcher September 2011 – August 2013 

Layton Aging and Alzheimer's Disease Center, 

Oregon Health and Science University, OR, USA 

Assistant Professor June 2011 – September 2011 

Center of Residency and Fellowship Program, University Hospital, 

Faculty of Medicine, University of the Ryukyus, Okinawa, Japan 

Assistant Professor June 2006 – June 2011 

Department of Public Health and Hygiene, Graduate School of Medicine, 

University of the Ryukyus, Okinawa, Japan 

Visiting Researcher October 2005 – June 2006 

Research Center for Zoonosis Control, 

Hokkaido University, Hokkaido, Japan 

Graduate Research Assistant April 2001 – March 2004 

Department of Health for Senior Citizens, Graduate School of Medicine, 

Hokkaido University, Hokkaido, Japan 

 

HONORS AND AWARDS 

McCullers Scholar 2017 

Mu Sigma Rho Statistical Honor Society, Elected 2015 

Best Performance Epidemiology and Biostatistics Ph.D. Comprehensive Student Exam, 

Department of Biostatistics, University of Kentucky 2015 



 

134 

 

Student Travel Award, 

Genetic Analysis Workshop (GAW) 19 2014 

Research Encouraging Award, 

Japan Personal Computer Application Technology Society 2008 

 

PUBLICATIONS 

1. Gal1 J, Chen J, Katsumata Y, Fardo DW, Wang WX, Artiushin S, Price D, Anderson 

S, Patel E, Zhu H, Nelson PT. Detergent insoluble proteins and inclusion body-like 

structures immunoreactive for PRKDC/DNA-PK/DNA-PKcs, FTL, NNT, and 

AIFM1 in the amygdala of cognitively impaired elderly persons. Journal of 

Neuropathology and Experimental Neurology. 2017 (in press). 

2. Marottoli FM, Katsumata Y, Koster KP, Thomas R, Fardo DW, Tai LM. Peripheral 

inflammation, APOE4 and amyloid-beta interact to induce cognitive and 

cerebrovascular dysfunction. ASN Neuro. 2017 (in press). 

3. Fardo DW, Katsumata Y, Kauwe JS, Deming Y, Harari O, Cruchaga C; Alzheimer's 

Disease Neuroimaging Initiative., Nelson PT. CSF protein changes associated with 

hippocampal sclerosis risk gene variants highlight impact of GRN/PGRN. 

Experimental Gerontology. 2017; 90: 83-89. 

4. Katsumata Y, Nelson PT, Ellingson SR, Fardo DW. Gene-based association study 

of genes linked to hippocampal sclerosis of aging neuropathology: GRN, 

TMEM106B, ABCC9, and KCNMB2. Neurobiology of Aging. 2017; 53: 193.e17-

193.e25. 

5. Ozaki T, Katsumata Y, Arai A. The use of psychotropic drugs for behavioral and 

psychological symptoms of dementia among residents in long-term care facilities in 

Japan. Aging & Mental Health. 2017; 21: 1248-1255. 

6. Arai A, Ozaki T, Katsumata Y. Behavioral and psychological symptoms of dementia 

in older residents in Long-Term Care facilities in Japan: A cross-sectional study. 

Aging & Mental Health. 2017; 21: 1099-1105. 

7. Ighodaro ET, Abner EL, Fardo DW, Lin AL, Katsumata Y, Schmitt FA, Kryscio 

RJ, Jicha GA, Neltner JH, Monsell SE, Kukull WA, Moser DK, Appiah F, Bachstetter 

AD, Van Eldik LJ; Alzheimer's Disease Neuroimaging Initiative (ADNI), Nelson PT. 



 

135 

 

Risk factors and global cognitive status related to brain arteriolosclerosis in elderly 

individuals. Journal of Cerebral Blood Flow & Metabolism. 2017; 37: 201-216. 

8. Katsumata Y, Fardo DW. On Combining Family- and Population-based Sequencing 

Data. BMC Proceedings. 2016; 10 (Suppl 7): 175-179. 

9. Nelson PT, Katsumata Y, Nho K, Artiushin SC, Jicha GA, Wang WX, Abner EL, 

Saykin AJ, Kukull WA; Alzheimer’s Disease Neuroimaging Initiative (ADNI), Fardo 

DW. Genomics and CSF analyses implicate thyroid hormone in hippocampal 

sclerosis of aging. Acta Neuropathologica. 2016; 132: 841-858. 

10. Webber KH, Casey EM, Mayes L, Katsumata Y, Mellin L. A comparison of a 

behavioral weight loss program to a stress management program: A pilot randomized 

controlled trial. Nutrition. 2016; 32: 904-909. 

11. Allen GI, Amoroso N, Anghel C, Balagurusamy V, Bare CJ, Beaton D, Bellotti R, 

Bennett DA, Boehme KL, Boutros PC, Caberlotto L, Caloian C, Campbell F, 

Chaibub Neto E, Chang YC, Chen B, Chen CY, Chien TY, Clark T, Das S, 

Davatzikos C, Deng J, Dillenberger D, Dobson RJ, Dong Q, Doshi J, Duma D, Errico 

R, Erus G, Everett E, Fardo DW, Friend SH, Fröhlich H, Gan J, St George-Hyslop P, 

Ghosh SS, Glaab E, Green RC, Guan Y, Hong MY, Huang C, Hwang J, Ibrahim J, 

Inglese P, Iyappan A, Jiang Q, Katsumata Y, Kauwe JS, Klein A, Kong D, Krause 

R, Lalonde E, Lauria M, Lee E, Lin X, Liu Z, Livingstone J, Logsdon BA, Lovestone 

S, Ma TW, Malhotra A, Mangravite LM, Maxwell TJ, Merrill E, Nagorski J, 

Namasivayam A, Narayan M, Naz M, Newhouse SJ, Norman TC, Nurtdinov RN, 

Oyang YJ, Pawitan Y, Peng S, Peters MA, Piccolo SR, Praveen P, Priami C, 

Sabelnykova VY, Senger P, Shen X, Simmons A, Sotiras A, Stolovitzky G, Tangaro 

S, Tateo A, Tung YA, Tustison NJ, Varol E, Vradenburg G, Weiner MW, Xiao G, 

Xie L, Xie Y, Xu J, Yang H, Zhan X, Zhou Y, Zhu F, Zhu H, Zhu S; Alzheimer's 

Disease Neuroimaging Initiative. Crowdsourced estimation of cognitive decline and 

resilience in Alzheimer's disease. Alzheimer's & Dementia. 2016; 12: 645-653. 

12. Aono J, Ikeda S, Katsumata Y, Higashi H, Ohshima K, Ishibashi K, Matsuoka H, 

Watanabe K, Hamada M. Correlation between plaque vulnerability of aorta and 

coronary artery: an evaluation of plaque activity by direct visualization with 

angioscopy. International Journal of Cardiovascular Imaging. 2015; 31: 1107-1114. 



 

136 

 

13. Katsumata Y, Mathews M, Abner EL, Jicha GA, Caban-Holt A, Smith CD, Nelson 

PT, Kryscio RJ, Schmitt FA, Fardo DW. Assessing discriminant ability, reliability, 

and comparability of multiple short forms of the Boston Naming Test in an 

Alzheimer’s Disease Center cohort. Dementia and Geriatric Cognitive Disorders. 

2015; 39: 215-227. 

14. Dodge HH, Katsumata Y, Zhu J, Mattek N, Bowman M, Gregor M, Wild K, Kaye 

JA. Characteristics associated with willingness to participate in a randomized 

controlled behavioral clinical trial using home-based personal computers and a 

webcam. Trials. 2014; 23: 508. 

15. Downer B, Estus S, Katsumata Y, Fardo DW. Longitudinal trajectories of 

cholesterol from midlife through late life according to apolipoprotein E allele status. 

International Journal of Environmental Research and Public Health. 2014; 11: 

10663-10693. 

16. Obayashi Y, Arai A, Liu Y, Katsumata Y, Kono K, Uchida H, Masaki M, Aoki M, 

Takahashi A, Yamada T, Kamei C, Sugiura S, Kaeriyama M, Tamahisro H. A survey 

on awareness of the Nitobe College among the first-year students of Hokkaido 

University, 2013. Journal of Higher Education and Lifelong Learning. 2014; 21: 61-

68. 

17. Katsumata Y, Todoriki H, Higashiuesato Y, Yasura S, Ohya Y, Craig Willcox D, 

Dodge HH. Very old adults with better memory function have higher low-density 

lipoprotein cholesterol levels and lower triglyceride to high-density lipoprotein 

cholesterol ratios: KOCOA project. Journal of Alzheimer's Disease. 2013; 34: 273-

279. 

18. Katsumata Y, Todoriki H, Higashiuesato Y, Yasura S, Craig Willcox D, Ohya Y, 

Willcox BJ, Dodge HH. Metabolic syndrome and cognitive decline among the oldest 

old in Okinawa: In search of a mechanism. The KOCOA project. Journals of 

Gerontology Series A-Biological Sciences and Medical Sciences. 2012; 67: 126-134. 

19. Katsumata Y, Arai A, Ishida K, Tomimori M, Lee RB, Tamashiro H. Which 

categories of social and lifestyle activities moderate the association between negative 

life events and depressive symptoms among community-dwelling older adults in 

Japan? International Psychogeriatrics. 2012; 24: 307-315. 



 

137 

 

20. Katsumata Y, Todoriki H, Yasura S, Dodge HH. Timed up and go test predicts 

cognitive decline among healthy adults aged 80 and older in Okinawa: KOCOA 

project. Journal of the American Geriatrics Society. 2011; 59: 2188-2189. 

21. Katsumata Y, Arai A, Tomimori M, Ishida K, Lee RB, Tamashiro H. Fear of falling 

and falls self-efficacy and their relationship to higher-level competence among 

community-dwelling senior men and women in Japan. Geriatrics and Gerontology 

International. 2011; 11: 282-289. 

22. Dodge HH, Katsumata Y, Todoriki H, Yasura S, Willcox DC, Bowman GL, Willcox 

B, Leonard S, Clemons A, Oken BS, Kaye JA, Traber MG. Comparisons of 

plasma/serum micronutrients between Okinawan and Oregonian Elderly: A Pilot 

Project. Journals of Gerontology Series A-Biological Sciences and Medical Sciences. 

2010; 65: 1060-1067. 

23. Arai A, Ishida K, Tomimori M, Katsumata Y, Grove JS, Tamashiro H. Association 

between lifestyle activity and depressed mood among home-dwelling older people: 

A community-based study in Japan. Aging & Mental Health. 2007; 1: 547-555. 

24. Zheng KC, Todoriki H, Katsumata Y, Gao WM Keohavong P. Analysis of p53 and 

K-ras mutations in patients with chronic bronchitis using laser capture 

microdissection microscope and mutation detection. Ningen Dock. 2007; 21: 66-68. 

25. Katsumata Y, Arai A, Tamashiro H. Contribution of falling and being homebound 

status to subsequent functional changes among the Japanese elderly living in a 

community. Archives of Gerontology and Geriatrics. 2007; 45: 9-18. 

26. Katsumata Y, Arai A, Tamashiro H. Nonlinear association of higher-level functional 

capacity with the incidence of falls in Japan. American Journal of Physical Medicine 

and Rehabilitation. 2006; 85: 688-693. 

27. Katsumata Y, Arai A, Ishida K, Tomimori M, Denda K, Tamashiro H. Gender 

differences in the contributions of the risk factors to depressive symptoms among the 

elderly persons dwelling in a community, Japan. International Journal of Geriatric 

Psychiatry. 2005; 20: 1084-1089. 

28. Arai A, Katsumata Y, Konno K, Tamashiro H. Sociodemographic Factors 

associated with Incidence of Dementia in Senior Citizens of a Small Town in Japan. 

Care Management Journals. 2004; 5: 159-165. 



 

138 

 

29. Konno K, Katsumata Y, Arai A, Tamashiro H. Functional status and active life 

expectancy among senior citizens in a small town in Japan. Archives of Gerontology 

and Geriatrics. 2004; 38: 153-166. 

30. Katsumata Y, Arai A, Konno K, Tamashiro H. Difference in terminology for 

referencing aging between generations. Journal of Public Health Practice. 2004; 68: 

578-582 (in Japanese). 

31. Tamashiro H, Katsumata Y, Arai A, Konno K, Nakazawa H, Usami K, Rambelli R. 

Past, present, and future HIV/AIDS. Japanese Journal of Urological Surgery. 2003; 

67: 637-641 (in Japanese). 

32. Arai A, Katsumata Y, Konno K, Tamashiro H. Status quo in barrier-free 

environment for wheelchair users in Sapporo. Journal of Public Health Practice. 

2003; 67: 637-641 (in Japanese). 

33. Arai A, Katsumata Y, Konno K, Ohta K, Ohtomo K, Kimura S, Takahashi M, 

Dobata T, Machida K. From a view of the wheelchair users--a training report of the 

students on barrier-free environment in Sapporo. Hokkaido Journal of Medical 

Science. 2002; 77: 107-110 (in Japanese). 

34. Katsumata Y, Arai A, Kishi R, Tamashiro H. The latest information of the schools 

of public health in USA: with reference to a proposed school of public health in Japan 

at the 21st century. Japanese Journal of Public Health. 2001; 48: 298-303 (in 

Japanese). 

35. Kagohashi T, Takarada T, Hasegawa H, Katsumata Y, Kuga M, Okamoto H, 

Kaneko H, Ishihara Y. Electrical resistivity and thermoelectric power of a quasi-one-

dimensional Nb3Te4 single crystal inserted with mercury: HgxNb3Te4. Journal of 

Physics: Condensed Matter. 1999; 11: 6373-6384. 


	STATISTICAL ANALYSES TO DETECT AND REFINE GENETIC ASSOCIATIONS WITH NEURODEGENERATIVE DISEASES
	Recommended Citation

	TITLE PAGE
	ABSTRACT OF DISSERTATION
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER ONE
	HS-Aging
	Brief history of genetic risks of AD and HS-Aging
	Rare variants and next-generation sequencing (NGS)
	Dissertation Outline

	CHAPTER TWO
	Abstract
	Introduction
	Material and methods
	Study subjects
	Quality control of the ADGC genotype data
	Identifying ethnic outliers
	Statistical analysis
	Gene-based association analysis
	Haplotype-based association analysis for HS-Aging
	Haplotype-based expression Quantitative Trait Locus (eQTL) analysis for ABCC9 gene expression


	Results
	Single variant-based association
	Gene-based association
	Haplotype-based association with HS-Aging
	Haplotype-based expression Quantitative Trait Locus (eQTL) association with ABCC9 gene expression

	Discussion
	Funding

	CHAPTER THREE
	Abstract
	Introduction
	Material and methods
	Genetic datasets
	Gene expression datasets
	Statistical analysis
	Hypothesis 1: identified IGAP SNPs are proxies of coding SNPs
	Hypothesis 2: identified IGAP SNPs are regulatory SNPs


	Results
	Hypothesis 1: identified IGAP SNPs are proxies of coding SNPs
	Hypothesis 2: identified IGAP SNPs are regulatory SNPs

	Discussion
	Hypothesis 1: identified IGAP SNPs are proxies of coding SNPs
	CR1 SNPs
	ZCWPW1 SNPs
	MS4A6A SNPs
	CLU SNPs
	HLA-DRB5-DRB1 SNPs
	ABCA7 SNPs

	Hypothesis 2: identified IGAP SNPs are regulatory SNPs

	Funding

	CHAPTER FOUR
	Abstract
	Introduction
	Material and methods
	Study subjects
	ADSP WES data
	Statistical analysis

	Results
	Scan-statistic-based analysis by a sliding window approach in TREM2 and TOMM40
	Scan-statistic-based analysis by an optimized window approach in TREM2 and TOMM40
	Genome-widely scan-statistic-based analysis by an optimized window approach

	Discussion
	Funding

	CHAPTER FIVE
	Summary
	Strengths and Limitations
	Future Research

	REFERENCES
	VITA

