3 research outputs found

    Role of Scx+/Sox9+ cells as potential progenitor cells for postnatal supraspinatus enthesis formation and healing after injury in mice.

    No full text
    A multipotent cell population co-expressing a basic-helix-loop-helix transcription factor scleraxis (Scx) and SRY-box 9 (Sox9) has been shown to contribute to the establishment of entheses (tendon attachment sites) during mouse embryonic development. The present study aimed to investigate the involvement of Scx+/Sox9+ cells in the postnatal formation of fibrocartilaginous entheses and in the healing process after injury, using ScxGFP transgenic mice. We demonstrate that Scx+/Sox9+ cells are localized in layers at the insertion site during the postnatal formation of fibrocartilaginous entheses of supraspinatus tendon until postnatal 3 weeks. Further, these cells were rarely seen at postnatal 6 weeks, when mature fibrocartilaginous entheses were formed. Furthermore, we investigated the involvement of Scx+/Sox9+ cells in the healing process after supraspinatus tendon enthesis injury, comparing the responses of 20- and 3-week-old mice. In the healing process of 20-week-old mice with disorganized fibrovascular tissue in response to injury, a small number of Scx+/Sox9+ cells transiently appeared from 1 week after injury, but they were rarely seen at 4 weeks after injury. Meanwhile, in 3-week-old mice, a thin layer of fibrocartilaginous tissue with calcification was formed at healing enthesis at 4 weeks after injury. From 1 to 2 weeks after injury, more Scx+/Sox9+ cells, widely distributed at the injured site, were seen compared with the 20-week-old mice. At 4 weeks after injury, these cells were located near the surface of the recreated fibrocartilaginous layer. This spatiotemporal localization pattern of Scx+/Sox9+ cells at the injured enthesis in our 3-week-old mouse model was similar to that in postnatal fibrocartilaginous enthesis formation. These findings indicate that Scx+/Sox9+ cells may have a role as entheseal progenitor-like cells during postnatal maturation of fibrocartilaginous entheses and healing after injury in a manner similar to that seen in embryonic development

    Remnant tissue enhances early postoperative biomechanical strength and infiltration of Scleraxis-positive cells within the grafted tendon in a rat anterior cruciate ligament reconstruction model.

    No full text
    When ruptured, ligaments and tendons have limited self-repair capacity and rarely heal spontaneously. In the knee, the Anterior Cruciate Ligament (ACL) often ruptures during sports activities, causing functional impairment and requiring surgery using tendon grafts. Patients with insufficient time to recover before resuming sports risk re-injury. To develop more effective treatment, it is necessary to define mechanisms underlying ligament repair. For this, animal models can be useful, but mice are too small to create an ACL reconstruction model. Thus, we developed a transgenic rat model using control elements of Scleraxis (Scx), a transcription factor essential for ligament and tendon development, to drive GFP expression in order to localize Scx-expressing cells. As anticipated, Tg rats exhibited Scx-GFP in ACL during developmental but not adult stages. Interestingly, when we transplanted the flexor digitorum longus (FDP) tendon derived from adult Scx-GFP+ rats into WT adults, Scx-GFP was not expressed in transplanted tendons. However, tendons transplanted from adult WT rats into Scx-GFP rats showed upregulated Scx expression in tendon, suggesting that Scx-GFP+ cells are mobilized from tissues outside the tendon. Importantly, at 4 weeks post-surgery, Scx-GFP-expressing cells were more frequent within the grafted tendon when an ACL remnant was preserved (P group) relative to when it was not (R group) (P vs R groups (both n = 5), p<0.05), and by 6 weeks, biomechanical strength of the transplanted tendon was significantly increased if the remnant was preserved (P vsR groups (both n = 14), p<0.05). Scx-GFP+ cells increased in remnant tissue after surgery, suggesting remnant tissue is a source of Scx+ cells in grafted tendons. We conclude that the novel Scx-GFP Tg rat is useful to monitor emergence of Scx-positive cells, which likely contribute to increased graft strength after ACL reconstruction
    corecore