132 research outputs found

    Reconstruction of the eruptive history of Usu volcano, Hokkaido, Japan, inferred from petrological correlation between tephras and dome lavas

    Get PDF
    Usu volcano has erupted nine times since 1663. Most eruptive events started with an explosive eruption, which was followed by the formation of lava domes. However, the ages of several summit lava domes and craters remain uncertain. The petrological features of tephra deposits erupted from 1663 to 1853 are known to change systematically. In this study, we correlated lavas with tephras under the assumption that lava and tephra samples from the same event would have similar petrological features. Although the initial explosive eruption in 1663 was not accompanied by lava effusion, lava dome or cryptodome formation was associated with subsequent explosive eruptions. We inferred the location of the vent associated with each event from the location of the associated lava dome and the pyroclastic flow deposit distribution and found that the position of the active vent within the summit caldera differed for each eruption from the late 17th through the 19th century. Moreover, we identified a previously unrecognized lava dome produced by a late 17th century eruption; this dome was largely destroyed by an explosive eruption in 1822 and was replaced by a new lava dome during a later stage of the 1822 event at nearly the same place as the destroyed dome. This new interpretation of the sequence of events is consistent with historical sketches and documents. Our results show that petrological correlation, together with geological evidence, is useful not only for reconstructing volcanic eruption sequences but also for gaining insight into future potential disasters

    Modeling rare gene variation to gain insight into the oldest biomarker in autism: construction of the serotonin transporter Gly56Ala knock-in mouse

    Get PDF
    Alterations in peripheral and central indices of serotonin (5-hydroxytryptamine, 5-HT) production, storage and signaling have long been associated with autism. The 5-HT transporter gene (HTT, SERT, SLC6A4) has received considerable attention as a potential risk locus for autism-spectrum disorders, as well as disorders with overlapping symptoms, including obsessive-compulsive disorder (OCD). Here, we review our efforts to characterize rare, nonsynonymous polymorphisms in SERT derived from multiplex pedigrees carrying diagnoses of autism and OCD and present the initial stages of our effort to model one of these variants, Gly56Ala, in vivo. We generated a targeting vector to produce the Gly56Ala substitution in the Slc6a4 locus by homologous recombination. Following removal of a neomycin resistance selection cassette, animals exhibiting germline transmission of the Ala56 variant were bred to establish a breeding colony on a 129S6 background, suitable for initial evaluation of biochemical, physiological and behavioral alterations relative to SERT Gly56 (wildtype) animals. SERT Ala56 mice were achieved and exhibit a normal pattern of transmission. The initial growth and gross morphology of these animals is comparable to wildtype littermate controls. The SERT Ala56 variant can be propagated in 129S6 mice without apparent disruption of fertility and growth. We discuss both the opportunities and challenges that await the physiological/behavioral analysis of Gly56Ala transgenic mice, with particular reference to modeling autism-associated traits
    corecore