47 research outputs found

    Electric coupling to the magnetic resonance of split ring resonators

    Full text link
    We study both theoretically and experimentally the transmission properties of a lattice of split ring resonators (SRRs) for different electromagnetic (EM) field polarizations and propagation directions. We find unexpectedly that the incident electric field E couples to the magnetic resonance of the SRR when the EM waves propagate perpendicular to the SRR plane and the incident E is parallel to the gap-bearing sides of the SRR. This is manifested by a dip in the transmission spectrum. A simple analytic model is introduced to explain this interesting behavior.Comment: 4 pages, 4 figure

    Magnetic metamaterials at telecommunication and visible frequencies

    Full text link
    Arrays of gold split-rings with 50-nm minimum feature size and with an LC resonance at 200-THz frequency (1500-nm wavelength) are fabricated. For normal incidence conditions, they exhibit a pronounced fundamental magnetic mode, arising from a coupling via the electric component of the incident light. For oblique incidence, a coupling via the magnetic component is demonstrated as well. Moreover, we identify a novel higher-order magnetic resonance at around 370 THz (800-nm wavelength) that evolves out of the Mie resonance for oblique incidence. Comparison with theory delivers good agreement and also shows that the structures allow for a negative magnetic permeability.Comment: 4 pages, 3 figure

    Self-organization approach for THz polaritonic metamaterials

    Get PDF
    In this paper we discuss the fabrication and the electromagnetic (EM) characterization of anisotropic eutectic metamaterials, consisting of cylindrical polaritonic LiF rods embedded in either KCl or NaCl polaritonic host. The fabrication was performed using the eutectics directional solidification self-organization approach. For the EM characterization the specular reflectance at far infrared, between 3 THz and 11 THz, was measured and also calculated by numerically solving Maxwell equations, obtaining good agreement between experimental and calculated spectra. Applying an effective medium approach to describe the response of our samples, we predicted a range of frequencies in which most of our systems behave as homogeneous anisotropic media with a hyperbolic dispersion relation, opening thus possibilities for using them in negative refractive index and imaging applications at THz range

    Metamaterials proposed as perfect magnetoelectrics

    Full text link
    Magnetoelectric susceptibility of a metamaterial built from split ring resonators have been investigated both experimentally and within an equivalent circuit model. The absolute values have been shown to exceed by two orders of magnitude that of classical magnetoelectric materials. The metamaterial investigated reaches the theoretically predicted value of the magnetoelectric susceptibility which is equal to the geometric average of the electric and magnetic susceptibilities.Comment: 5 pages, 3 figure

    Zinc oxide as an ozone sensor

    Get PDF
    Journal of Applied Physics, Vol. 96, nÂş3This work presents a study of intrinsic zinc oxide thin film as ozone sensor based on the ultraviolet sUVd photoreduction and subsequent ozone re oxidation of zinc oxide as a fully reversible process performed at room temperature. The films analyzed were produced by spray pyrolysis, dc and rf magnetron sputtering. The dc resistivity of the films produced by rf magnetron sputtering and constituted by nanocrystallites changes more than eight orders of magnitude when exposed to an UV dose of 4 mW/cm2. On the other hand, porous and textured zinc oxide films produced by spray pyrolysis at low substrate temperature exhibit an excellent ac impedance response where the reactance changes by more than seven orders of magnitude when exposed to the same UV dose, with a response frequency above 15 kHz, thus showing improved ozone ac sensing discrimination

    Directly patterned substrate-free plasmonic 'nanograter' structures with unusual Fano resonances

    Get PDF
    The application of three-dimensional (3D) plasmonic nanostructures as metamaterials,nano-antennas, and other devices faces challenges in producing metallic nanostructures with easily definable orientations, sophisticated shapes and smooth surfaces that are operational in the optical regime and beyond. Here, we demonstrate that complex 3D nanostructures can be readily achieved with focused-ion-beam irradiation-induced folding and examine the optical characteristics of plasmonic “nanograter” structures that are composed of free-standing Au films.These 3D nanostructures exhibit interesting 3D hybridization in current flows and exhibit unusual and well-scalable Fano resonances at wavelengths ranging from 1.6 to 6.4 μm. Upon the introduction of liquids of various refractive indices to the structures, a strong dependence of the Fano resonance is observed, with spectral sensitivities of 1400 nm and 2,040 nm per refractive-index-unit (RIU) under figures of merit of 35.0 and 12.5, respectively, for low-order and high-order resonance in the near-infrared region. This work indicates the exciting, increasing relevance of similarly constructed 3D free standing nanostructures in the research and development of photonics and metamaterials
    corecore