67 research outputs found

    ChatGPT-4 with Code Interpreter can be used to solve introductory college-level vector calculus and electromagnetism problems

    Full text link
    We evaluated ChatGPT 3.5, 4, and 4 with Code Interpreter on a set of college-level engineering-math and electromagnetism problems, such as those often given to sophomore electrical engineering majors. We selected a set of 13 problems, and had ChatGPT solve them multiple times, using a fresh instance (chat) each time. We found that ChatGPT-4 with Code Interpreter was able to satisfactorily solve most problems we tested most of the time -- a major improvement over the performance of ChatGPT-4 (or 3.5) without Code Interpreter. The performance of ChatGPT was observed to be somewhat stochastic, and we found that solving the same problem N times in new ChatGPT instances and taking the most-common answer was an effective strategy. Based on our findings and observations, we provide some recommendations for instructors and students of classes at this level.Comment: Main text and appendice

    Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance

    Full text link
    We experimentally demonstrate that a thin (~150 nm) film of vanadium dioxide (VO2) deposited on sapphire has an anomalous thermal emittance profile when heated, which arises due to the optical interaction between the film and the substrate when the VO2 is at an intermediate state of its insulator-metal transition (IMT). Within the IMT region, the VO2 film comprises nanoscale islands of metal- and dielectric-phase, and can thus be viewed as a natural, disordered metamaterial. This structure displays "perfect" blackbody-like thermal emissivity over a narrow wavelength range (~40 cm-1), surpassing the emissivity of our black soot reference. We observed large broadband negative differential thermal emittance over a >10 {\deg}C range: upon heating, the VO2/sapphire structure emitted less thermal radiation and appeared colder on an infrared camera. We anticipate that emissivity engineering with thin film geometries comprising VO2 will find applications in infrared camouflage, thermal regulation, infrared tagging and labeling.Comment: 3 figure
    • …
    corecore