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Abstract

The vast majority of optical components and devices in use today can be grouped

under the umbrella of “bulk optics”; i.e. they generally have a non-negligible thickness

compared to the wavelength of light. This is true of components from lenses to wave

plates to Fabry-Perot etalons, all of which need sufficient thickness such that light waves

can accumulate an appropriate amount of phase upon propagation through the structure.

In this thesis, we develop and explore a variety of optical components that are thin

compared to the wavelength of light and lie at the interface between two materials (i.e.

a substrate and air). We explore approaches to filter, absorb, redirect, and re-shape

light with flat, ultra-thin structures which are easy to fabricate with modern micro- and

nanofabrication techniques.

In the first section of this entitled Lossy optical coatings and perfect absorbers, we

show that thin film interference effects can be observed in appropriately-designed films

even if the films are significantly thinner than a quarter of the wavelength of light in the

material. We use these films to demonstrate color coatings and multi-color images in
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the visible, tunable perfect absorbers and anomalous thermal emitters in the infrared,

and propose a variety of applications ranging from ultra-thin photodetectors and solar

cells to modulators and microbolometers.

In the second section entitled Controlling light propagation with optical antenna

metasurfaces, we develop a class of metasurfaces comprising resonant plasmonic anten-

nas, which can imprint nearly-arbitrary distributions of amplitude, phase, and polar-

ization on a light beam. These metasurfaces, which can are thinner than 1% of the

wavelength of light, enable the design flat optical components including lenses, axicons,

spiral phase plates, blazed gratings, and wave plates, which we demonstrate in the near-

and mid-infrared spectral ranges.
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Chapter 1

Introduction

1.1 Overview

The field of optics has a long history, starting as early as about 1900 BCE with the

ancient Egyptians, with discoveries by the ancient Greeks 400-300 BCE, the Arabs

around 1000 CE, and eventually the western world beginning with the 1200s CE [1].

In rough order of discovery and development, optical devices that emerged from these

times include mirrors, lenses (sometimes called burning glasses because they could be

used to focus sunlight and start a fire), and curved focusing mirrors, which eventually

led to the design and implementation of spectacles for vision correction, and telescopes

and microscopes for vision enhancement. These inventions paralleled (and sometimes

preceded) the conceptual understanding of optics, which included the laws of refraction

and reflection and somewhat later the concepts of polarization and interference. As

the classical optical components were being further developed and improved (e.g. the

correction of chromatic aberrations in lenses), the wave theory of light became developed,

and when it was unified with electromagnetism it became the field of physical optics.

1



Chapter 1. Introduction

Physical (or electromagnetic wave) optics has been tremendously successful over the last

decade and a half. It is able to describe the vast majority of observable light phenomena

including refraction, diffraction, birefringence, and thin film interference, and strongly

connects optics in the visible with equivalent phenomena at other frequency ranges from

gamma rays and X-rays to microwaves and radio waves. In this thesis we will rely on

physical optics exclusively, eschewing any quantum mechanical treatment of light.

Other than mirrors, the vast majority of simple optical elements fall under the umbrella

of “bulk optics”; i.e. they generally have a non-zero thickness which is larger than (or

at least on the order of) the wavelength of light. A canonical example of a bulk optical

element is a convex glass lens (Fig. 1.1), which is able to transform a plane wave into

a convergent spherical wavefront because light propagating through different lengths of

glass acquires a different optical phase shift (more phase accumulation in the middle of

the lens). Another standard example of a bulk optical element is a waveplate comprising

a slab of birefringent material which manipulates the polarization state of light, or a

prism which is able to separate different wavelengths of light via refraction through a

dispersive material. A Fabry-Perot etalon, used to filter or measure the wavelength of

light, is another example, as are layered high-reflective (HR) and anti-reflective (AR)

optical coatings which also rely on Fabry-Perot-type interference. All of these devices

rely on phase accumulation through a material, and thus must not be thin compared to

the wavelength of light. Diffractive optical elements such as Fresnel zone plates which

consist of alternating opaque and transparent rings may be structurally thin compared

to the wavelength of light, but their function relies on light interference after the element,

and this volume of space between the element and a region considered to be the far field

zone is still significantly greater than the wavelength of light.

In this thesis we will explore the flat optics, or optics at interfaces which lie outside
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Chapter 1. Introduction

Figure 1.1: Left: a conventional convex glass lens [from Wikimedia Commons]. Right:
diagram showing that a plane wave incident on a convex lens becomes a convergent

spherical wave.

of the category of bulk optics. We will explore approaches to filter, absorb, redirect,

and re-shape light with flat structures that are significantly thinner than the wavelength

of light, and which can be easily fabricated with modern micro- and nanofabrication

techniques.

In the first section of this thesis entitled Lossy optical coatings and perfect absorbers

we focus on thin film interference, which is normally a phenomenon that is observed in

single layers or stacks of transparent thin films with thicknesses of at least a quarter

of the wavelength of light in the material. Highly absorbing dielectrics are typically

not used because usually light propagation through such media minimizes interference

effects.

We show that under appropriate conditions strong interference can instead persist in

ultrathin, highly absorbing films, and demonstrate a new type of optical coating com-

prising such a film on a reflective substrate, which selectively absorbs various frequency

ranges of the incident light. These coatings rely on nontrivial phase shifts at interfaces

between highly-absorbing materials, and as a result have a low sensitivity to the angle

of incidence and can be as thin as a twentieth of the wavelength of light in the thin
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film. We utilize different material systems to observe this effect in the visible and mid-

infrared spectral ranges. In the visible, we demonstrate absorbing color coatings with

potential applications to labeling, photodetection, and solar energy harvesting, while in

the infrared we demonstrate absorbers that are widely tunable with temperature and

thermal emitters which display anomalous emittance behavior.

In the second section entitled Controlling light propagation with optical antenna metasur-

faces, we describe a dramatically different approach to creating optical components such

as lenses, wave plates, etc. compared to the aforementioned bulk optics approach. In-

stead of relying on gradual phase accumulation to achieve desired wavefront molding, we

design resonant metallic structures which introduce phase, amplitude, and polarization

changes into a light field over a scale much smaller than the wavelength of light. Using

this approach, we demonstrate a wide variety of flat optical components that are only

40-60 nanometers thick, including lenses, axicons, blazed gratings, spiral phase plates,

and wave plates in the near-infrared and mid-infrared spectral ranges. Furthermore,

we demonstrate that light at interfaces decorated with these optical antenna metasur-

faces obeys a generalized set of reflection and refraction laws, which are derived and

experimentally verified.

1.2 Previously published work

Much of the material in this thesis has been published in peer-reviewed journals with a
number of co-authors. In particular:

Chapter 2: Lossy optical coatings and perfect absorbers contains material published as:

M. A. Kats, R. Blanchard, P. Genevet and F. Capasso, “Nanometre optical coatings
based on strong interference effects in highly absorbing media”, Nature Materials 12,
20 (2013); published online in 2012.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash,
D. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber using a tunable
phase change material”, Applied Physics Letters 101, 221101 (2012).
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M. A. Kats, S. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Ca-
passo, “Enhancement of the color contrast in ultra-thin highly-absorbing optical coat-
ings”, Applied Physics Letters 103, 101104 (2013)

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso,
“Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and
large broadband negative differential thermal emittance”, in press in Physical Review
X, arXiv:1305.0033

M. A. Kats, R. Blanchard, S. Ramanathan, and F. Capasso, “Thin-Film Interference in
Lossy, Ultra-Thin Layers”, in press in Optics and Photonics News

Chapter 3: Controlling light propagation with optical antenna metasurfaces contains
material published as

N. Yu, P. Genevet, M. A. Kats, F. Aieta, Jean-Philippe Tetienne, F. Capasso, Z.
Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection
and refraction”, Science 334, 333 (2011)

M. A. Kats, N. Yu, P. Genevet, Z. Gaburro, F. Capasso, “Effect of radiation damping
on the spectral response of plasmonic components”, Optics Express 19, 21749 (2011)

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro,
F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities”,
Applied Physics Letters 100, 13101 (2012)

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, F. Capasso, “Out-of-plane re-
flection and refraction of light by anisotropic optical antenna metasurfaces with phase
discontinuities”, Nano Letters 12, 1702 (2012)

R. Blanchard, G. Aoust, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, F. Capasso, “Mod-
eling nanoscale V-shaped antennas for the design of optical phased arrays”, Physical
Review B 85, 155457 (2012)

M. A. Kats, P. Genevet, G. Aoust, N. Yu, R. Blanchard, F. Aieta, Z. Gaburro, and F.
Capasso, “Giant birefringence in optical antenna arrays with widely tailorable optical
anisotropy”, Proceedings of the National Academy of Sciences 109, 12364 (2012)

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, F. Capasso,
“Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plas-
monic metasurfaces”, Nano Letters 12, 4932 (2012)

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, “A broadband,
background-free quarter-wave plate based on plasmonic metasurfaces”, Nano Letters
12, 6328 (2012).

M. A. Kats, R. Blanchard, P. Genevet, J. Lin, D. Sharma, Z. Yang, M. M. Qazilbash,
D. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic
antenna arrays using a phase change material”, Optics Letters 38, 368 (2013)

N. Yu, M. A. Kats, P. Genevet, F. Aieta, R. Blanchard, G. Aoust, Z. Gaburro, and
F. Capasso, “Controlling light propagation with interfacial phase discontinuities”, in
Active Plasmonics and Tuneable Metamaterials, edited by A. Zayats and S.
Maier, Wiley 2013
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N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z.
Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna
metasurfaces”, IEEE Selected Topics in Quantum Electronics (2013)

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad elec-
trical tuning of graphene-loaded plasmonic antennas”, Nano Letters 13, 1257 (2013)
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Chapter 2

Lossy optical coatings and perfect

absorbers

2.1 Introduction: thin film interference and basic optical

coatings

Thin film interference is a ubiquitous and well-understood optical phenomenon respon-

sible for the colorful, iridescent reflections that we observe from oil films on water (Fig.

2.1), soap bubbles (Fig. 2.2), and peacock feathers. This effect occurs in structures

which are composed of one or more transparent thin films, whose typical thickness is

similar to the wavelength of light [1][2].

Light incident on a single transparent thin film will both reflect and refract at the

top interface. The light that is transmitted into the film propagates until the bottom

interface, where a portion is reflected and a portion is transmitted. This process repeats
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Figure 2.1: Photograph of an diesel film of varying thickness on water demonstrating
thin film interference. From ref. [3]

Figure 2.2: Photograph of a soap bubble colored by thin film interference effects and
reflecting a portion of the sky. From ref. [4]
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multiple times light bounces back and forth between the two interfaces, with some of

the light leaking out at every bounce.

Because of the wave nature of light, we can imagine each portion of light as a partial

wave, each with its own wavelength, amplitude, and phase. The way these partial

waves interfere constructively, destructively, or neither ultimately determines which

wavelengths of light are transmitted and which are reflected. The amount of optical

phase that a partial wave accumulates as it makes a trip through the film depends on

the so-called optical thickness, which is a function of the layer thickness, the incidence

angle, and the refractive index. As a result, the destructive and constructive interference

conditions and hence the colors we see depend on the refractive indices of the film and

the surrounding regions, the film thickness, and the viewing angle.

Thin film interference is prominently featured in all areas of optical science and en-

gineering. For example in the early 1900s Jean-Baptiste Perrin, a French Nobel-prize

winning physicist, carefully observed interference fringes from soap films, deduced their

thickness, and found that this thickness varied by increments of 4.5 nanometers. Thus

Perrin calculated the length of the soap molecules along their longest axis and directly

demonstrated the discontinuous (molecular) structure of matter [5].

Optical interference coatings comprising multiple layers of transparent materials are cor-

nerstone of modern optical technology [2]. These coatings utilize the principle of thin film

interference to enable applications such as anti-reflection (AR) and high-reflection (HR),

the former being especially ubiquitous in imaging equipment such as microscope objec-

tives, telephoto lenses, and prescription glasses. Conventional coatings comprise some

combination of thin metallic films serving as partial and full reflectors, and wavelength-

scale thick dielectric films which rely on Fabry-Perot-type interference.
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The simplest and most well-known conventional optical coating is the quarter-wave AR

coating, in which the reflectivity between two dielectric media with refractive indices n1

and n3 is minimized by inserting a dielectric film with refractive index n2 and thickness

λ/4n2 where n3 > n2 > n1 in between (λ is the free-space wavelength). There is a wire

array of more advanced optical coatings in use today; these sophisticated optical coatings

design strategies often utilize many films of varying materials and thicknesses to achieve

particular performance benchmarks, with architectures that are created and optimized

using computer software. A variety of commercial software for thin film calculation

and optimization is available, including Essential Macleod, FilmStar, Film Wizard and

OptiLayer.

The vast majority of both simple and complex optical coatings use purely dielectric

materials, often with thicknesses corresponding to a quarter-wave; in fact the index of

Hecht’s classic book Optics immediately redirects “Thin films” to “See Dielectric films”

[1] and the first section of Macleod’s Thin-film Optical Filters following the introductory

theory chapter is called “Quarter- and Half-Wave Optical Thicknesses”. It turns out that

by relaxing this constraint that the materials comprising the substrate and the thin films

be purely dielectric (i.e. transparent and lossless), coatings that minimize reflectivity

of a surface can be made thinner than the standard quarter-wave dimension. One

example is anodized titanium: by electrochemically forming thin layers of transparent

titanium oxide on a titanium substrate, a variety of colors can be generated which

are a result of wavelength-selective absorption [6]. Since the oxide is transparent, the

optical absorption occurs upon repeated reflections from the oxide/titanium interface. In

anodized titanium, light can be efficiently absorbed given layers that are approximately

between λ/(6nT iO2) and λ/(5nT iO2), where nT iO2 is the refractive index of the oxide; the

reason that the thickness can be smaller than the standard quarter-wavelength dimension
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is that unlike for lossless dielectrics the phase shift upon reflection at the oxide/titanium

interface differs from π due to the complex refractive index of titanium (e.g. at λ = 600

nm, nT i ' 2.6 + 3.7i).

In this chapter, we are going to demonstrate that strong optical thin-film interference

effects can be observed even for highly-lossy dielectric films [7] [8] [9] [10].

2.2 New optical coatings with large losses

2.2.1 Basic understanding and formalism

The Fabry-Perot-type effect of conventional optical thin films utilizes constructive and

destructive interference, with the optical phase controlled by gradual accumulation

within the nearly transparent dielectric layers. The material losses in the dielectrics

are usually assumed to be small such that light is gradually absorbed, and the inter-

face reflection and transmission phase changes at the interfaces between the dielectric

films can therefore be assumed to be either 0 or π, depending on the index contrast.

Our approach instead utilizes highly-absorbing dielectrics (semiconductors at photon

energies above the band gap in the first example) in which light is rapidly attenuated,

together with metals which have finite optical conductivity. Combining these materials

gives access to a range of interface reflection and transmission phase shifts which can

be engineered by modification of the material properties (Fig. 2.3). The large optical

attenuation within the highly-absorbing dielectrics and the concomitant nontrivial in-

terface phase shifts lead to strong resonant behavior in films that are much thinner than

the wavelength of light. We demonstrate these ultra-thin coatings on the surfaces of

noble metals in the visible regime and show that deposition of nanometers of a lossy
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dielectric on a metal results in dramatic modification of the reflectivity spectrum (and

therefore color).

The equations describing the behavior of light incident from air (n1 = 1) onto a lossy

film with thickness h and complex refractive index ñ2 = n2 +ik2, deposited on a metallic

substrate with complex index ñ3 (Fig. 2.4) can be found in optics textbooks [6]). The

reflection coefficient for TE (s-polarized) light incident at an angleθ1 is

r̃ =
r̃12 + r̃23e

2iβ̃

1 + r̃12r̃23e2iβ̃
(2.1)

where r̃mn = (p̃m − p̃n)/(p̃m + p̃n), p̃m = ñm cos(θ̃m), β̃ = (2π/λ)ñ2h cos(θ̃2), and θ̃m =

sin−1(sin(θ1)/ñm) which is the complex-valued form of Snell’s law (pp. 740-741 of [6]).

For TM (p-polarized) light, p̃m is replaced by q̃m = cos(θ̃m)/ñm. The total reflectivity

is given by R = |r̃|2, and since we assume that the substrate is metallic such that there

is no transmission, the absorption of the structure can be written as A = 1 − R. One

noteworthy example is an asymmetric Fabry-Perot structure comprising a quarter-wave

film (or odd multiples thereof, such that h ' mλ/4n2, where m is an odd integer) on a

perfect reflector ( Fig. 2.4(a)). This resonator in the presense of moderate losses serves as

an absorbing optical cavity in which the loss can be considered as a perturbation. In the

absence of loss, this type of cavity functions as a phase-shifting element called a Gires-

Tournois etalon [11]. Asymmetric Fabry-Perot cavities have been used for reflection

modulation [12], resonant cavity enhanced (RCE) photodetection and emission [13][14],

ferroelectric infrared detection [15], and other applications.

For a metal substrate in the perfect electric conductor (PEC) limit, k3 → ∞, so

r̃2,3 = −1,corresponding to complete reflection with a phase shift of π in the reflected

electric field (Fig. 2.4(a, b)), which makes h ' λ/4n2 the lower limit on the thickness
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Figure 2.3: Phase shifts experienced by the electric field upon reflection from different
materials. When light is incident from a lower index medium onto a higher index one
(a), the reflection phase shift is π. Conversely, light incident from a higher index
medium to a lower index one (b) experiences a phase shift of 0 in reflection. In the
case of light incident from any material onto a perfect electric conductor (PEC), the
reflection phase shift is always π. Unlike all of the previous cases, light reflection from
a material with a complex refractive index creates phase shifts that are neither 0 nor

π.

of a resonant cavity because a round trip inside such a cavity should accumulate ap-

proximately 0 phase (modulo 2π). At optical frequencies, however, metals have finite

conductivity and therefore their complex index is finite [16] (similar metal-like complex

indices can also be found in a variety of non-metallic materials at longer wavelengths

such as, e.g., indium-tin-oxide in the near-IR [17], sapphire in the mid-IR [18] which we

will get to in later sections, etc), so the reflection phase shift at the metal interface can

vary (Figs. 2.3 and 2.4(c)). Likewise, if a dielectric film has large optical losses (k2 on

the order of n2), the reflection and transmission phase shifts at the boundary between

it and air are not limited to 0 or π as in the case for lossless dielectrics (Figs. 2.3 and

2.4(b, d)). These nontrivial interface phase shifts allow the total phase accumulation,

which includes both the interface and propagation phase shifts, to reach approximately

0 (modulo 2π) for certain films with thicknesses significantly below λ/4n2, creating an

absorption resonance (note that the phase accumulation is close to but not precisely zero

at this resonance condition when the system has high losses, which we will explain in

sections 2.2.4 and 2.6). Since there is very little light propagation in such a thin struc-

ture, the material optical losses must be very high in order for the round-trip absorption

to be significant. By combining these non-trivial interface phase shifts, the phase accu-

mulated through propagation, and the attenuation of the wave as it propagates through
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Figure 2.4: Schematic of incident light from medium 1 (air) being reflected from
a structure comprising dielectric medium 2 with thickness h and metallic medium 3.
(a) The case of the perfect electric conductor (PEC) metal, and a lossless dielectric.
Since there is no absorption and no penetration into the metal, the reflectivity equals
unity at all wavelengths. Resonators approaching this limit behave as phase shifting
elements, known as Gilles-Tournois etalons . (b) An absorbing dielectric on a PEC
substrate supports an absorption resonance for h ≈ mλ/4n2 assuming that the losses
(k2) are relatively small and m is an odd integer. No resonance exists for h smaller than
λ/4n2. (c) A lossless dielectric on a substrate with finite optical conductivity (e.g. gold
at visible frequencies) can support a resonance for h << λ/4n2 due to the nontrivial
phase shifts at the interface between medium 2 and medium 3, but the total absorption
is small since the only loss mechanism is one associated with the finite reflectivity of
the metal. (d) An ultra-thin (h << λ/4n2) absorbing dielectric on gold at visible

frequencies can support a strong and widely tailorable absorption resonance.

the highly-lossy medium, a new type of optical coating can be designed (Fig. 2.4(d))

where losses are no longer considered as a perturbation but are an integral part of the

design.

2.2.2 Implementation of gold/germanium optical coatings in the visi-

ble

We demonstrated these concepts at visible frequencies by modifying the reflectivity of a

gold (Au) surface by coating it with evaporated germanium (Ge) films of a few nanome-

ters in thickness, which creates broadband absorption resonances with the spectral posi-

tion determined by the film thickness. The wide optical absorption band influences the

color by suppressing the reflectivity in a portion of the visible spectrum. Ge was selected
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because it is highly absorbing at visible frequencies (see Fig. 2.5(a)) due to direct elec-

tronic transitions which appear at energies higher than that of the L-absorption edge

[19]. We coated an optically-thick (150 nm) Au film with Ge of thickness h between 7

nm and 25 nm by using electron-beam evaporation, which resulted in drastic changes in

the reflectivity. The films were deposited by electron-beam evaporation using a Denton

evaporator. Au was deposited at a rate of approximately 2 Å/s under a pressure of 10−6

torr without substrate heating, with the rate measured by a crystal monitor. Ge was

deposited at a rate of 1 Å/s at a pressure of approximately 2 x 10−6 torr.

The complex refractive indices given in Fig. 2.5(a) and used in the calculation of the

spectra in Fig. 2.5(c) and Fig. 2.6(c, d) were obtained by variable-angle spectroscopic

ellipsometry (VASE) of optically-thick evaporated films (150 nm for Au and 1000 nm

for Ge in the 400 - 850 nm range). In ellipsometry literature this sort of measurement

is referred to as measuring the “pseudo dielectric function”; “pseudo” is in the name

because of the assumption that a single reflection comes from a sharp interface between

the material and the air [20]. We preferred this method to ellipsometry on thin absorbing

films (e.g. about 10 nm Ge on a known substrate) because it decreases the number of

unknowns from (n, k, h) to (n, k), which helps avoid over-fitting errors and non-unique

solutions. It should be emphasized here that the complex index for Ge shown in Fig.

2.5(a) is different from what is often found in online databases for Ge. This is because

most databases cite the complex index for crystalline Ge, whereas our evaporated films

are most likely amorphous. In general amorphous and crystalline semiconductors are

expected to have very different properties; as an example, crystalline Ge is an indirect

bandgap material, whereas in amorphous Ge the bandgap is not as well defined.

We performed near-normal incidence measurements (7◦ incidence angle with unpolarized

light) between 400 nm and 850 nm using a spectrophotometer with a photomultiplier
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Figure 2.5: (a) Real and imaginary parts of the complex refractive indices of gold
(Au) and germanium (Ge), obtained by variable angle spectroscopic ellipsometry. (b)
Near-normal incidence (7◦) reflection spectra of thick Au coated with 7, 10, 15, 20, and
25 nm of Ge. Inset: schematic of the Ge film on an Au substrate, showing a partial
wave decomposition. (c) Calculated reflection spectra using Eqn. (2.1) and the optical
constants in (a) corresponding to the measurement in (b). (d) Calculated fraction of

the total incident light which is absorbed within the Ge layer.

tube (PMT). The near-normal incidence reflectivity spectra were taken using a Hitachi

4100 spectrophotometer with a tungsten lamp source and a photomultiplier tube in

the 400 - 850 nm range. The angle-dependent, polarization-dependent spectra were

taken using a Woollam WVASE32 spectroscopic ellipsometer using reflection/transmis-

sion (R/T) mode. The stability of the optical properties over extended periods of time is

discussed in section 2.2.5. The experimental reflectivity spectra for Ge films of thickness

between 7 nm and 25 nm coated on Au are given in Fig. 2.5(b).

The calculated reflectivity spectra corresponding to the measurements in Fig. 2.5(b) are

obtained by using Eqn. (2.1), and are shown in Fig. 2.5(c). In the case of Fig. 2.5(c),

we simulated unpolarized incident light by calculating the reflectivity for both s- and p-

polarizations, and taking an average of the two to simulate unpolarized light. Excellent
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agreement is obtained between the experimental data and the calculations which used

the complex indices from the VASE measurements. We also computed the total fraction

of the incident light that is absorbed within the Ge film only (Fig. 2.5(d)), showing that

the majority of the absorption occurs in this layer as opposed to the underlying Au. For

example in the case of the 15 nm Ge sample at a wavelength of approximately 670 nm,

over 80% of the incident light is absorbed in the Ge layer while only about 4% of the

light is absorbed in the Au, with the remaining 15% of the light reflected. The spectral

position of the absorption band, which corresponds to the reflectivity minimum, depends

on h, with a shift of approximately 20 nm in wavelength for every 1 nm change in h across

the visible spectral range. This strong absorption resonance occurs in a film that is much

thinner than the wavelength of light (e.g. ≈ λ/(13n2) at λ ≈ 560nm, with n2 ≈ 4.3 for

the 10 nm Ge film in the calculation) – a result of the interplay between the complex

reflection coefficient at the Ge/Au substrate and the large but finite attenuation of light

within the Ge film [see section 2.2.4 for a detailed explanation based on decomposition

into partial waves]. Note that in our material system, the absorption coefficient of Ge

decreases with increasing wavelength and the properties of Au slowly approach those of

a PEC, so the resonant absorption thickness will slowly converge to h ≈ λ/(4n2) at long

wavelengths and films of large thickness.

Because these coatings are much thinner than the wavelength of light, there is little

phase accumulation due to the propagation throught the film compared to the reflection

phase change upon reflection. As a result, the optical properties of these coatings are

robust with respect to the angle of incidence. We demonstrated this by measuring the

s- and p-polarized reflectivity of the sample with 15 nm of Ge, which shows that the

absorption feature remains prominent for angles of incidence from 0◦ and ≈ 60◦ in both

polarizations (Fig. 2.6(a, b)). The corresponding calculated spectra are shown in in Fig.
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Figure 2.6: (a, b) Experimental reflectivity spectra for s- and p-polarization, respec-
tively, for angles of incidence from 20◦ to 80◦ for an Au film coated with 15 nm of Ge.

(c, d) The calculated spectra corresponding to those in (a, b) using Eqn (2.1).

2.6(c, d).

The large change in reflectivity allows for the coloring of metals using these films of

subwavelength thickness. In Fig. 2.7, we show a photograph of samples of Au coated

with Ge from 0 nm to 25 nm in thickness, creating an array of colors including pink,

blue, and violet. The photograph was taken with a Canon PowerShot ELPH 310 HS

digital camera under illumination from regular white ceiling fluorescent lights. Another

photo of the same samples is shown in Fig. 2.8, this time on a black background with

diffuse light illumination.

In samples (a) - (i), the substrate material for Au deposition was a polished silicon wafer.

In samples (j) - (l), however, the rough, unpolished back-side of the wafer was used, and

the various colors are still clearly visible, indicating that the present effect is relatively
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Figure 2.7: Wide variety of colors formed by coating Au with nanometer films of Ge.
(a - h) 0 nm, 3 nm, 5 nm, 7 nm, 10 nm, 15 nm, 20 nm, and 25 nm of Ge deposited
on optically-thick Au, which was deposited on polished silicon. The clip marks from
mounting in the e-beam evaporator are visible. (i - k) 0 nm, 10 nm, and 20 nm of Ge

deposited over 150 nm of Au, on a rough (unpolished) silicon substrate.

insensitive to surface roughness. This is to be expected given the small dependence of

the reflectivity on the incidence angle shown in Fig. 2.6 and the fact that the length

scale of the roughness (microns) is very different from the film thickness (nanometers),

but nonetheless runs against intuition given our every-day experience with thin film

interference effects. We also show several samples of silver (Ag) colored via the same

principle; in particular a color similar to that of gold is induced in Ag samples by coating

them with approximately 7 nm of Ge (Fig. 2.9).

We note that the modification of the absorption and color of metals has recently been
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Figure 2.8: Another photograph of the samples shown in Fig. 2.7.

Figure 2.9: (a-f) Thick silver (Ag) films coated with 0, 3, 5, 7, 10, and 15 nm of
evaporated Ge, respectively

demonstrated via nano-, micro-, and macro-structuring of the metal surface by lithog-

raphy and etching, femtosecond laser ablation, or other methods [21][22][23][24][25]. By

comparison, our technique is non-damaging to the metal surface, can be reversed by

chemical etching of the absorbing dielectric layer, does not require any serial fabrica-

tion steps, and involves only smooth surfaces which may be advantageous for integra-

tion into devices. Furthermore, the presently demonstrated approach does not involve

multiple scattering, metallic nano-cavity resonances, or surface plasmons, as in Refs.
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[21][22][23][24][25] but is instead a result of simple albeit counterintuitive thin film inter-

ference; this simplicity allows for the prediction and design of new coatings via simple

analytical expressions such as Eqn. (2.1).

2.2.3 Making multi-color images with patterned ultra-thin films

In addition to continuous coatings, single- and multi-color images can be created by

combining the deposition of ultra-thin absorptive films with conventional lithographic

techniques. As an example, we generated several color images on a glass slide with fea-

ture sizes ranging from microns to millimeters by using multi-step contact photolithog-

raphy with alignment. Photoresist was spun onto a glass slide (Shipley S1813, 4000

rpm), was exposed through chrome-coated glass photomasks using a Karl Suss MJB4

mask aligner, and was then developed in CD-26 for 60 seconds. The Au and Ge films

were then deposited through the resulting mask, with the excess material removed via

liftoff in acetone with ultrasonic agitation (Fig. 2.10). The deposition thicknesses were

65 nm Au (preceded by a 5 nm Ti adhesion layer) to create an optically-thick layer,

followed by 7 nm, 4 nm, 4 nm, and 10 nm of Ge, creating overall Ge layers of thickness

7 nm, 11 nm, 15 nm, and 25 nm, respectively. Five colors are demonstrated: gold (0

nm of Ge), light pink (≈ 7 nm), purple (≈ 11 nm), dark blue (≈ 15 nm), and light blue

(≈ 25 nm). (Fig. 2.11)

2.2.4 Partial-wave explanation

In this section, we focus on the physical mechanism of the ultra-thin film resonance and

explain the conditions in which it can occur. We begin by analyzing the total reflectivity

from a structure like that in Fig. 2.4(b), where medium 2 has complex refractive index
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Figure 2.10: Explanation of the photolithography process used to generate the pat-
terns in Fig. 2.11. In (a), a single sub-step of lithography, deposition, and liftoff is
shown. This process is repeated many times with alignment in between steps as shown

in (b) to finally create the multi-color images.

Figure 2.11: Photograph of color images generated via multi-step patterning of ultra-
thin Ge films, with the edge of a United States penny included for size comparison. Five
steps of photolithography with alignment are used to selectively deposit an optically-
thick layer of Au on a glass slide, followed by Ge layers of either 7 nm, 11 nm, 15 nm,
or 25 nm. This yields light pink, purple, dark blue and light blue colors, respectively.
Among the demonstrated patterns are the logo and shield of the School of Engineering
and Applied Sciences; these are a trademark of Harvard University, and are protected

by copyright; they are used in this research with permission.
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Figure 2.12: (a, b) Reflectivity for a film with complex index n + ik and h = 10 nm
and 50 nm, respectively, on a perfect electric conductor (PEC) substrate, at λ = 532

nm.

n + ik and medium 3 is a perfect electric conductor (PEC). We plot the reflectivity

at λ = 532 nm as a function of n and k, and find that for a film with h = 10 nm the

reflectivity stays close to 1 for all values of (n, k) from 0 to 5, but for h = 50 nm a zero in

reflectivity occurs at 2.81 + 0.61i, which corresponds roughly to a λ/4n (quarter-wave)

film (Fig. 2.12). This can be understood as a critical coupling condition to the lossy

asymmetric Fabry-Perot cavity formed inside the film [26] [27] (for further discussion

see section 2.4.1). No absorption resonance exists for a film thinner than this with a

PEC substrate.

When the conductivity of the substrate becomes finite, however (as is the case for metals

at visible frequencies (Fig. 2.4(d)), the situation changes significantly. For example, in

Fig. 2.12 we plot the reflectivity vs (n, k) of the films given that the substrate is Au at

λ = 532 nm (n3 = .44+2.24i). We observe that when the index of the film is 4.3+0.71i,

the reflectivity drops to zero even though the film thickness is only 10 nm, corresponding

to ≈ λ/12n.

To better understand the mechanism leading to the reflectivity minimum at 4.3 + 0.71i,

we expand Eqn. 2.1 into partial waves to get r =
∞∑
m=0

rm where rm = t12r23
mr21

(m−1)t21e
2miβ

for m > 0 and rpq = (ñp − ñq)/(ñp + ñq) , tpq = 2ñp/(ñp + ñq), and r0 = r21. With

this formulation, we can plot the reflectivity taking into account only the first m + 1
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Figure 2.13: Reflectivity for a film with complex index n + ik and h = 10 nm on a
gold substrate at λ = 532 nm.

partial waves (the +1 is because m begins at 0) to see how the reflectivity evolves as

more and more partial waves are included. We do this in Fig. 2.14 (a) and (c), where

we assume that the substrate is a PEC or Au at 532 nm, respectively, h = 10 nm, and

n2 = 4.3 + ik where k can vary from 0 to 2.1 (see legend). We see that in the PEC case

the final reflectivity is close to 1 for all values of k. The partial reflectivity goes above 1

when only the first 1-2 secondary waves are taken into account, but the value drops back

down below 1 when the other partial waves are included, preserving energy conservation.

In the case of Au, however, the reflectivity changes significantly with changing k, even

reaching precisely 0 at approximately k = 0.7. Note that for all cases with significant

loss (k >> 0) the partial reflectivity reaches its final value of after only 3-4 partial waves

are accounted for (corresponding to 3-4 passes through the lossy film).

Since the partial wave amplitudes are all complex quantities, we can plot them in the

complex plane, where they are represented as vectors (referred to as “phasors”) (Fig.

2.14 (b, d)). The first phasor r0 begins at the origin, r1 begins at the end of r0, etc. The

total reflectivity R is the magnitude-squared of the final value of the phasor trajectory

in the complex plane (R is identically zero if the trajectory returns to the origin). In

the case of the PEC substrate, the first few partial waves all move away from the origin,

indicating constructive interference and therefore a large final value of R (Fig. 2.14(b)).

With the Au substrate, however, the phasor trajectory makes a sharp turn after the first
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Figure 2.14: (a) Partial reflectivity from the sample taking into account the initial
reflection between mediums 1 and 2, and also 0, 1, ... secondary partial waves where
the first partial wave comes from a single round trip through medium 2, the second
from two round trips, etc. The substrate is a perfect electric conductor (PEC), with
n3 =∞+i∞. Medium 2 has index 4.3+ik, where k is given in the legend of (b), λ = 532
nm, and h = 10 nm. (b) Phasor diagram corresponding to (a), showing graphically
how all values of k within the range of 0 - 2.1 lead to roughly the same overall reflection
coefficient R (close to 1). The circles each represent a particular reflectivity (R = 1:
solid line, R = 0.2: dashed line, R = 0.1: dot-dashed line, R = 0.05: dotted line),
which is reached if the phasor trajectory terminates on a particular circle. (c) Partial
reflectivities as in (a), but with n3 = 0.44 + 2.24i, the complex index of Au at 532 nm.
(d) Phasor diagram corresponding to (c). The resulting values of R can be read off by
using the circles as a reference. In particular, the k = 0.7 trajectory ends up at the

origin, yielding R = 0.

partial wave, a result of the near-zero phase shift that the light experiences reflecting from

a lossy dielectric into a low-optical-conductivity metal (such as Au at 532 nm), opening

the possibility that the complex sum of the secondary partial waves could partially or

totally cancel r0.

In the phasor diagrams in Fig. 2.14(b, d), we drew circles centered on the origin corre-

sponding to reflectivities R = 1, 0.2, 0.1, and 0.05 (solid line, dashed line, dot-dashed

line, dotted line, respectively). This allows us to visually identify the reflectivity by

using the circles as references; for example, since the k = 1.4 (red) trajectory terminates
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between the dotted and dot-dashed circles, we know that R is between 0.05 and 0.1. We

see that varying k results in a wide range of reflectivities. In particular, the k = 0.7

trajectory terminates precisely at the origin, resulting in R = 0 (corresponding to 100%

absorption). The reflectivity minimum in n-k space is very broad (Fig. 2.13), so even

when the values do not precisely match those of the minimum-reflectivity condition, a

significant absorption resonance can still be observed. This is what happens for evapo-

rated Ge films in our experiments (Fig. 2.5(b, c)), which at 532 nm correspond to the

cyan curve in Fig. 2.14(a). We note that while the R = 0 condition cannot be achieved

with the Ge/Au material system in the visible at normal incidence due to the limited

degrees of freedom (k2 and n2 can be tuned by controlling the incident wavelength, but

not independently of each other), such a condition can be found for some incident angles.

For example, the reflectivity in Fig. 2.6(b) drops to 0 for θ ≈ 70◦ and λ ≈ 535 nm.

2.2.5 Material characterization of gold/germanium optical coatings

We performed atomic force microscopy (AFM) measurements on some of the bare and

coated substrates to obtain an estimate of the surface roughness post-deposition. For

the films deposited on polished Si wafers (Figs. 2.5, 2.6, and 2.7(a-h) in the main text),

we found that the root-mean-square (RMS) roughness was approximately 1.24 nm for

the uncoated Au sample, 0.47 nm for the sample coated with 7 nm of Ge, and 0.37

nm for the sample coated with 20 nm of Ge (Fig. 2.15). We also performed contact

profilometer measurements on the samples deposited on the rough back-sides of Si wafers

(Fig. 2.7(k-m) in main text), and found that the RMS roughness was approximately

680 nm, with the lateral feature size of approximately 5-10µm.

Long-term stability of the highly-absorbing films may be a concern for some applications.

In the case of our experiments, the measurements were within 1-2 days of the deposition,
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Figure 2.15: AFM images of 5 m x 5 m patches of the uncoated Au sample (a), the
Au sample with 7nm of Ge (b), and the Au sample with 20nm of Ge (c), all deposited

on a polished Si substrate.

and the samples were then stored in gel-boxes outside of any cleanroom environment. No

special care was taken to protect the samples, which were also periodically completely

exposed to ambient conditions. We observed no perceptible change in the colors of the

samples over a four month period, indicating that they are relatively stable. We also

performed another set of reflectivity measurements corresponding to that of Fig. 2.6 on

the same sample, and observed very little change over these four months (Fig. 2.16).

However we observed that even a 30 minute dip in water removed nearly all of the Ge.

Also in one instance all of the Ge seems to have dissolved when samples were sent to

collaborators by mail via the US Postal Service (USPS); we still do not know precisely

what caused the Ge to dissolve in transit.

For long-term stability, a variety of methods may be required to passivate and protect

the semiconductor surface. If Ge is used as in the present work, then this can be achieved

by chemical passivation methods (e.g. sulfide functionalization) [28], which should not

significantly affect the optical properties of the films. Alternatively, a capping layer may

be deposited on top of the semiconductor to protect against chemical or mechanical

damage. One possibility is sputtered hydrogenated amorphous germanium (a-Ge:H),

which has been used to protect, for example, Ge-based nuclear radiation detectors and

can be tens of nanometers thick [29]. Another is the hard carbon coating, also known
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Figure 2.16: (a, b) Experimental reflectivity spectra for s- and p-polarization, re-
spectively, for angles of incidence from 20 to 80 for an Au film coated with 15 nm of
Ge, as taken one day after the deposition of Ge. This is the same data as presented in
Fig. 2.6(a, b). (c, d) Experimental reflectivity spectra corresponding to those in (a, b),

taken approximately 4 months after the deposition.

as the diamond-like coating (DLC), which adheres well to germanium and silicon, and

is extremely resistant to both chemical and abrasive environments [30] [31].

A capping layer with a thickness of tens of nanometers or more may significantly affect

the observed optical properties, depending on the optical properties of the material and

its thickness. To test this, we performed 4-layer transfer matrix calculations, including

a 10 nm DLC layer on top of the Ge. This thickness was chosen because it was the

thinnest DLC layer that was analyzed as a protective coating in ref. [31], and the

complex refractive index was interpolated from the data provided in ref. [30]. The

resulting reflection spectrum was nearly unaltered (Fig. 2.17). A thicker layer may

change the reflectivity properties significantly; however based on our calculations the

ultra-thin absorption resonances can still be successfully designed. In fact, the capping
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Figure 2.17: Normal incidence reflectivity calculations of a Au/Ge system for Ge
thicknesses between 0 nm and 25 nm as in Fig. 2(c) in the main text with (a) no

protective coating and (b) a 10 nm diamond-like coating (DLC)

layer can be seen as an additional degree of freedom in the design of these thin optical

coatings, as is seen in Section 2.3.

2.2.6 Equivalent reflecting material: distinguishing pigments and in-

terference colors

Suppose that one desired to color an object such as a flat piece of metal. Two common

processes come to mind: painting and thin film interference (or other structural coloring).

With the application of paint, the metal acquires the color of the pigment in the paint

because all of the light is reflected, scattered, or absorbed before it ever reaches the

metal surface. In this way, paint is a method of coloring which is substrate-agnostic:

whether the metal was silver, gold, or copper, it will appear blue when covered with

blue paint. The situation is different for objects colored by thin film interference. Oil

films on water can appear to be any color of the rainbow, despite that fact that small

quantities both oil and water are mostly transparent. In this case, the optical properties

of the substrate underlying the film matter a lot, because light bounces back and forth

in the film multiple times.
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Most of the time one can easily visually determine if an object is painted or colored

by thin film interference: a painted surface looks more or less the same from every

viewing angle, whereas the reflection from optical thin films changes color and intensity

depending on the angle at which you hold it. This is because the optical path length

through the film depends on the viewing angle, and it is this length that determines

the interference condition [16]. However this effect becomes less significant as the films

become thinner, until it is nearly impossible to visually tell the difference between a

painted surface and one colored with ultra-thin interference coatings. Transparent films

at such tiny thicknesses do not significantly affect the color of the substrate but, as we

have now seen, highly-absorbing films do.

We decided to explore whether it was possible to use optical techniques to determine if

an unknown sample is a solid block of material, is coated with a smooth paint, or is made

up of an ultra-thin film coating on a substrate. In otherwirds, can an equivalent semi-

infinite medium can be defined which has the same reflectivity spectra as the combined

substrate/film structure for various angles of incidence?

To explore this, we used the concept of “input optical admittance or “surface optical

admittance”, which is sometimes used to analyze optical thin film assemblies (e.g. ref.

[2]). For any arbitrary collection of films given a particular incidence angle and polar-

ization, one can define a single surface admittance at an interface between medium 1

and medium 2, which takes into account the effect of all of the layers underneath (2, 3,

4, etc..). This is analogous to defining a single electrical admittance (or, equivalently,

impedance) for a circuit comprising many elements. For materials without a magnetic

response (permeability µ = 1, which is usually small at optical frequencies (ref. [2])),

the surface optical admittance is directly proportional to a surface refractive index, and

we will limit ourselves to this case.
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Figure 2.18: Calculated reflectivity for normal incidence from a gold surface coated
with 15 nm of Ge (a) and extracted surface refractive index (b)

Figure 2.19: Calculated reflectivity spectra for oblique incidence ((a) s-polarization
and (b) p-polarization) from the layered geometry (blue) and from a flat infinite half-
space with complex refractive indices (n, k) given in Fig. 2.18(b) (red). The reflectivity
data for θ = 0◦ is shown with the dashed curves, for θ = 40◦ with the dot-dashed curves,

and the θ = 80◦ with the dotted curves.

For example, we analyzed the structure comprising an Au substrate with 15 nm of Ge

(blue dot-dashed curve in Fig. 2.5(b, c, d), and the data of Fig. 2.6) and calculated the

normal incidence reflectivity (Fig. 2.18(a)) as well as the surface refractive index (Fig.

2.18(b)). The extracted values for the surface refractive index (n and k) are such that

one could reasonably imagine a real material (or a metamaterial) with these parameters.

We used these values of n and k to calculate the reflectivity at several oblique angles

for both s- and p-polarization, and compared them to the actual calculated reflectivities

from the layered system (Fig. 2.19).
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The match is not perfect, which means that strictly speaking one cannot define a ho-

mogeneous semi-infinite medium which is completely equivalent to the layered system

when looking at the reflection properties. However, the reflectivity curves actually match

reasonably for both p- and s- polarization for all incident angles, indicating that it is

possible to define a semi-infinite medium which nearly reproduces the optical proper-

ties of the layered system. This means that, to an approximation, one can also define

quantities such as the pseudo-Brewster angle [32] for our layered surface.

This is related to a common problem in spectroscopic ellipsometry, which is a sophis-

ticated technique used to determine both complex refractive indices of solids and thin

films and film thicknesses. While modern ellipsometers are sensitive to the presence of

films down to a monolayer in thickness, they are unable to simultaneously determine

the thickness and refractive index of an ultra-thin film if both are unknown [33].

2.2.7 Potential applications of highly-absorbing coatings in the visible

The approach of using ultra-thin, absorptive dielectric films as optical coatings is very

general and can be applied to applications across a range of frequencies, starting with

simple absorbers and color filters. The large change in optical properties given relatively

small changes in material thickness can be used for sub-nanometer optical thickness mon-

itoring of the deposition of semiconductor films. The coloring of metals with nanometer-

thick films of inexpensive material may prove useful in various aspects of design and the

visual arts. Additionally, creating patterned structures comprising ultra-thin absorb-

ing coatings using conventional fabrication techniques introduces new capabilities for

labeling, printing, and displaying information.
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As with all instances of destructive interference, conservation of energy maintains that

light cannot just disappear: it has to go somewhere or be absorbed. For the case of

lossless thin films (such as soap bubbles), any destructive interference in reflection must

correspond to constructive interference in transmission, and vice versa. When light

shines on a sample with an opaque substrate, such as gold in our experiments, any light

that is not reflected must be absorbed by the structure.

While light absorption is often considered to be undesirable in optical systems like

microscopes and telescopes, there is a wide range of optical and optoelectronic devices

for which absorption is a key feature. Most systems which require spectral filtering utilize

wavelength-dependent optical absorption. Perhaps more importantly, the efficiency of

light-harvesting devices such as solar cells and photodetectors can benefit greatly from

enhancement of the total amount of light that is absorbed in their active layers.

Various approaches have been pursued to enhance light absorption in thin film solar cells

including roughened surfaces, gratings, photonic crystals, plasmonic nanoparticles and

dielectric nano- and microspheres with whispering gallery and Mie resonances, to name

a few [34]. Many of these have promise, but significant concerns over the cost remain.

While high costs may be tolerated for ultra-high-efficiency photovoltaics for specialized

applications, one may question the practicality of spending hundreds or thousands of

dollars on high resolution lithography to improve the efficiency of cheap, commodity

solar cells.

From this perspective, our thin film structures which are able to absorb large fractions

(e.g. 70 - 80%) of incident light in ultra-thin semiconductor films appear to be prime

candidates for integration into light harvesting devices. Since there are no nanofabrica-

tion steps required beyond thin film deposition, large area absorbing films can be created
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cheaply and efficiently.

The high degree of absorption in semiconductors makes them excellent candidate ma-

terials for these ultra-thin coatings, potentially enabling new types of photodetectors

with enhanced quantum efficiency that require orders of magnitude less semiconduc-

tor material, significantly decreasing the material cost and growth time (compared to,

e.g., resonant-cavity enhanced photodetectors which have an absorbing layer inside a

wavelength-scale Fabry-Perot cavity [14]). Solar cell applications could also benefit

from the large spectral bandwidth of the absorption resonances. Furthermore, in solar

cells there is a tradeoff between thickness and material purity which is related to charge

carrier lifetimes in materials with defects [35]; making ultra-thin highly-absorbing layers

could relax this purity constraint, further reducing costs.

In fact, one such device has already been demonstrated. Last fall Dotan et alpublished a

study parallel to our own work which came out only three weeks after our initial report,

featuring 10 to 50 nanometer thick iron oxide films deposited on metallic back-reflectors

and used as a water splitting cells which generate hydrogen from sunlight [36]. Conven-

tional iron oxide water splitting cells suffer from the poor electronic properties of iron

oxide, significantly limiting performance. By utilizing the ultra-thin-film interference

phenomenon, the authors were able to significantly enhance the efficiency of these cells

without utilizing costly nanoscale fabrication techniques. We believe that many more

light-harvesting devices using ultra-thin-film interference are on the horizon.

2.3 Multi-layer ultra-thin film optical coatings

As previously mentioned, modern designs of optical coatings often involves many-layer

optical stacks of films with different refractive indices and different thicknesses [2]. Often
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times these designs become so complex that designing them demands computer software

[37]. In principle, these stacks can be arbitrarily large as long as the materials remain

lossless, and correspondingly the reflectance and transmittance spectra can become ar-

bitrarily complex. In the case of very lossy coatings like the ones we describe in this

chapter, there is a limit to the complexity and overall thickness of a stack of optical

coatings due to the large optical absorption losses: if the film stack is too thick, light

will never make it to the bottom and hence the bottom of the stack will have no effect

on the reflectivity (in this case the transmittance is trivially 0).

Nethertheless it is worth exploring if relatively thin multi-layer coatings can bring added

functionalities. In this section, we show that the functionality of deeply subwavelength

optical interference coatings and absorbers can be augmented by integration of trans-

parent layers on top of the lossy layers. These can be used as protective coatings for

harsh environments, as transparent electrodes for optoelectronic devices, or to modify

the optical interference conditions. Here, we show that an additional sub-quarter-wave

layer of a transparent dielectric can be used as another degree of freedom in tailoring

the absorption within ultra-thin lossy layers.

In the previous section, we used uniform evaporated films of amorphous Ge of thickness

between 5 nm and 25 nm on an optically-thick gold substrate to obtain colors including

various shades of pink, violet, and blue (Fig. 2.20(a)). In the work described in this

section we used sputtering to deposit an additional sub-quarter-wave layer of aluminum

oxide (Al2O3) on top of the Ge coatings to both protect the coatings and alter the

reflectivity (Fig. 2.20(b)).

To limit the number of depositions as well as to demonstrate the full range of possible

thicknesses of the Au/Ge system, we developed a deposition method which forms a
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Figure 2.20: (a). Schematic of the thin film geometry used in ref. [8] as well as the
previous section, which is the basis of the work presented in this section. A continuous
film of amorphous germanium (Ge, shown as dark blue) of subwavelength thickness is
deposited over a gold (Au) substrate, and the reflectivity is probed from the top. (b).
A subwavelength layer of transparent alumina (Al2O3) is deposited over the structure

in (a).

thickness gradient of the Ge film on an Au substrate. This allows us to have access to

all thicknesses of Ge on a single sample. After coating a section of silicon wafer with

an optically-thick (≈ 150 nm) layer of Au, we inserted the sample Au-side-down into

an electron beam evaporator for deposition of amorphous Ge. We modified the path

between the crucible and the sample by introducing a slit aperture into the chamber

(Fig. 2.21). The aperture changes the line-of-sight between the crucible and the sample

so that the middle of the sample “sees” a large portion of the crucible, while points

farther away from the middle of the sample see progressively less of the crucible. As

a result, the deposition rate varies across the sample, and a gradient of thickness can

be generated. The distances between the crucible and the aperture and between the

aperture and the sample were 16 cm and 15.2 cm, respectively, the width of the slit

aperture was 8 mm wide, and the melted Ge in the crucible is approximately circular

with a diameter of 2 cm. While the dynamics of the deposition are beyond the scope of

this work, back of the envelope calculations indicate that the thickness profile is expected

to be roughly linear.
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Figure 2.21: Schematic (a) and photograph (b) of our evaporator. A rectangular
aperture (8 mm) is placed in the evaporation path between the crucible and sample.
Ge was deposited onto a gold substrate, creating an amorphous Ge film with a thickness

gradient.

We performed three depositions of Al2O3 over the top of this sample, each time mask-

ing off a portion of it, to create a sample which comprises a continuum of thickness of

Ge and several different thicknesses of Al2O3. The depositions were performed using a

magnetron sputterer with an Al2O3 target. A photo of the resulting sample is shown in

Fig. 2.22(a), using standard fluorescent ceiling lights for illumination and no additional

postprocessing. The thickness of Al2O3 was determined using a scanning ellipsometer,

assuming nAl2O3 = 1.7. Note that even the thickest of the Al2O3 films is still significantly

thinner than a quarter-wavelength across the entire visible spectrum. Fig. 2.22(a) im-

mediately shows all how the deposition of the Al2O3 layers affects the optical properties

of the Au/Ge coatings. The interference colors in region (i) match those obtained in the

previous section, though here the entire gradient of colors possible with this particular

configuration is visible. This color gradient persists in all four sections, but the color

contrast across the gradient increases significantly for regions (iii) and (iv) compared to

region (i) which has no Al2O3 coating.

We performed a set of analytical calculations to obtain the theoretical reflectivity and

color values corresponding to our fabricated sample. We again utilized the transfer
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Figure 2.22: (a) Photo of the sample comprising optically-thick Au deposited on a
silicon wafer, with a film of Ge of gradually varying thickness, overcoated with different
layers of Al2O3. The four sections (i) - (iv) indicate areas where no Al2O3 was deposited,
or areas with 14 nm, 28 nm, and 44 nm of Al2O3, respectively. (b) Simulated image
corresponding to the photo in (a), with the calculated reflectivities of each section
obtained using complex refractive index values of Au and Ge obtained by ellipsometry
in the previous section and assuming nAl2O3 = 1.7, and then converted into RGB
colors. The calculation was done for unpolarized light at a 30◦ angle of incidence to
match the photograph. (c) Chromaticity diagram corresponding to the image in (b),
showing that for increasing Al2O3 thickness, the Ge gradient sweeps out a bigger area in
the x-y chromaticity space. The four trajectories (i)-(iv) correspond to the four Al2O3

thicknesses, and each point corresponds to a certain thickness of Ge. The blue “shark
fin” denotes the set of the most “saturated” or “pure” colors that can be defined.
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matrix formalism [38] to obtain the angle- and wavelength-dependent reflectivities of the

multi-layer geometries, using the complex refractive index values of evaporated Ge and

Au as shown in Fig. 2.5. Note that the thicknesses of the Ge and Al2O3 films are varying

across our sample (Fig. 2.22(a)), so every point on the sample has its own reflectivity

spectrum. Following these calculations, we rendered an image that corresponds to the

photograph in Fig. 2.22(a).

We used the ColorPy package [39] to convert each reflectivity spectrum into the corre-

sponding standard red-green-blue (RGB) color values. The process involves integrating

the reflectivity spectrum with three standard “matching functions” as defined by the

International Commission on Illumination in 1931 (CIE 1931), which accounts to the

response of the three different photoreceptors in the eye. Using the “D65” standard

illuminant, which approximates normal daylight, RGB values for a particular reflectiv-

ity spectrum are generated. The generated image is shown in Fig. 2.22(b), oriented so

that it corresponds to the photograph in Fig. 2.22(a). This image was generated for

a 30◦ angle of incidence which roughly corresponds to the angle at which the photo in

Fig. 2.22(a) was taken, and prior to color rendering the s- and p-polarized spectra were

averaged to simulate unpolarized light.

The values obtained from integrating a spectrum with the three CIE 1931 matching

functions can be converted into two parameters: “brightness” (or “luminance”), and a

two-dimensional “chromaticity” value usually written as (x, y) [40]. The chromaticity

value can also be converted into “hue” and “saturation” values. We plotted the generated

colors on a chromaticity map shown (Fig. 2.22(c)), where the four curves correspond to

the four sections in Fig. 2.22(a, b), and moving along the curve clockwise corresponds to

increasing Ge thickness. For increasing Al2O3 thickness, the curves cover a larger portion
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of the x-y chromaticity space compared to no Al2O3, demonstrating quantitatively the

increase in color contrast which is apparent from Fig. 2.22(a, b).

To perform a more careful comparison between our experimental and theoretical results,

we measured the reflectivity spectrum at various points on the sample. We used an opti-

cal microscope with a 5X, 0.15 NA objective and a halogen light illuminate the sample,

and used an additional port to confocally collect a portion of the reflected light into a

multimode optical fiber (400 µm core), which was then sent to a grating spectrometer

(Ocean Optics). The collection spot was 80 µm in diameter, which is much smaller

than the spatial extent of our Ge thickness gradient, and therefore we assumed that the

thickness change was negligible over the spot. We performed background subtraction

and normalization to a flat silver mirror (reflectance ≥ 0.95). Given our 0.15 NA ob-

jective, the incoming and collected light had a variation of incidence angles from 0◦ to

8.6◦, which we assume to be negligible because of the relatively weak dependence of the

reflectivity of ultra-thin films to the angle of incidence (e.g. see Fig. 2.6). The spectra

were recorded with a wavelength resolution of approximately 0.35 nm, and the data was

smoothed to reduce spectrometer noise. We used an automated, two-axis translation

stage to scan across the sample, acquiring spectra at 22 x 40 = 880 points with a spac-

ing of 500 µm along the direction of the gradient and 600 µm along the perpendicular

direction.

The experimental spectra are summarized in Fig. 2.23(a-d). Four reflectivity curves are

shown per panel, corresponding to no Al2O3 film (solid line), and Al2O3 films of 14 nm

(dashed), 28 nm (dash-dotted), and 44 nm (dotted). Panels (a)-(d) correspond to Ge

film thicknesses of approximately 3 nm, 7.5 nm, 12 nm, and 15 nm respectively. These

thickness values were determined by comparison to the transfer matrix calculations (Fig.

2.23(e-h)) which are in good agreement with the experiment. The differences between
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the regions with different Al2O3 films are clear from both the experimental and calcu-

lated spectra: the Al2O3 layer serves to increase the absorption in the Ge layer, reducing

the reflectivity (note that the Al2O3 layer itself has negligible optical losses), and this

effect becomes stronger with increasing Al2O3 thickness. Very thin Al2O3 layers do not

substantially perturb the reflectivity, and it is likely that sub-10 nm layers will be nearly

imperceptible. As the thickness increases, the Al2O3 layer begins to operate more and

more like an AR coating, even though the thicknesses that we have studied here do

not reach a quarter wavelength anywhere in the visible spectrum (at the shortest wave-

lengths (λ = 450 nm), the 44 nm Al2O3 film corresponds to approximately λ/(6nAl2O3)).

Note that because the optical phase shift upon reflection from the Al2O3/Ge interface is

not π as it would have been if the Ge were lossless, the Al2O3 thickness that minimizes

reflection is not necessarily λ/(4nAl2O3), and varies significantly as a function of wave-

length because of the large dispersion of Ge and the underlying Au. Our calculations

show that a thickness of roughly λ/(5nAl2O3) to λ/(7nAl2O3) is needed to minimize the

reflectivity at various wavelengths within the visible range.

In summary, understanding the effect of additional transparent layers deposited over

these coatings is important, because such layers can be used as protection against chem-

ical or physical erosion or as transparent electrical contacts for optoelectronic devices.

In this section, we showed that depositing transparent layers of alumina on top of ultra-

thin coatings comprising gold and germanium can enhance the optical absorption as well

as the color range that can be attained.
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Figure 2.23: Measured (a-d) and calculated (e-h) reflectivity spectra for normal inci-
dence at positions on the sample corresponding to four different values of Ge thickness
(approximately 3 nm, 7.5 nm, 12 nm, and 15 nm, respectively) and four different values
of Al2O3 thickness (0, solid line; 14 nm, dashed; 28 nm, dash-dotted; 44 nm, dotted).
The insets of (e-h) are a calculated image of the sample corresponding to the image in
Fig. 2.22(b), except calculated for normal incidence instead of a 30◦ incidence angle (as
in Fig. 2.22(b)). The white squares in the insets indicate the positions where the four
reflectivity curves are calculated. The approximate thickness of the Ge film at these
locations are shown in the insets of (a-d). Note that because the gold films are opaque,

the reflectivity R =1−A, where A is the absorptivity.
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2.4 Tunable ultra-thin perfect absorber

One particularly convenient attribute of classical electromagnetism is that Maxwell’s

equations are scale invariant; that is, any structure will have the same optical properties

when illuminated by light with wavelength λ as the same structure scaled up or down by

a factor N when illuminated by light with wavelength Nλ, assuming that the complex

refractive indices of the constituent materials remain the same. As a result, concepts

developed for one frequency range are frequently applicable to another. In fact, one

fruitful area of research over the last decade involves implementing existing concepts from

radio and microwave frequencies (or at least using them as an inspiration) to develop new

optical and optoelectronic devices at optical frequencies (e.g. see the next chapter for

optical frequency devices based on antennas, a concept that has been primarily explored

for much lower frequencies).

In the previous sections we focused on ultra-thin, highly-absorbing optical coatings in

the visible regime. In the following, we will apply the same optical principles to the

mid-infrared spectral range, which requires new materials (unlike Maxwell’s equations,

material properties are not frequency-invariant) but opens up new opportunities. In

particular, we will focus on obtaining a thin film absorber which can be switched from

a high reflectance (and low absorbance state), to a low reflectance (high absorbance)

state.

2.4.1 Resonant cavity enhanced processes and critical coupling

In optics, resonant optical cavity configurations have been used for detectors and mod-

ulators to achieve enhanced absorption at selected wavelengths and a high on-off ratio,

respectively. The design of such devices benefits from critical coupling, a phenomenon
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which facilitates efficient power transfer to a resonator, which occurs when the internal

losses of a resonant cavity are equal to the mirror losses, i.e. due to light escaping from

the device facets [26]. One implementation of this concept is the asymmetric Fabry-Perot

(FP) cavity in which the dielectric forming the cavity is typically at least a quarter-wave

in thickness and is surrounded by mirrors with unequal reflectivities, in which the back

reflector is often a Bragg mirror [12][41][13][27][42][43]. This geometry has been used for

reflection modulators [12][27][42], for resonant-cavity enhanced (RCE) photodetectors

[41][13] and for enabling strong coupling between light and matter [43]. More recently,

the concept of critical coupling has been reformulated in terms of the time reversal

of lasing at threshold or “coherent perfect absorption” [44][45][46]. Another example

of critically-coupled resonators is the class of perfect absorbers comprising plasmonic

nanostructures, which have been demonstrated over a wide range of frequencies, with

typical experimental absorption values of approximately 90% [47][48][49][50] and reach-

ing as high as 99% [51]. Unlike the asymmetric FPs, these nanostructured devices are

very thin compared to the wavelength of light, but have complex nanofabrication re-

quirements which may limit practical device applications. It is sometimes assumed that

perfect absorbers based on dielectric cavities cannot be made much thinner than the

operating wavelength, and that plasmonic nanostructures are required to overcome this

limitation [46].

2.4.2 VO2/sapphire perfect absorber concept

In this section, we demonstrate a perfect absorber comprising an unpatterned, ultra-thin

(approximately λ/65) film of vanadium dioxide (VO2) on an sapphire substrate. By uti-

lizing an intermediate state of the insulator-metal phase transition (IMT) in VO2 which

exhibits multiple co-existing phases, an effective medium with tunable optical properties
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is formed. In particular, the absorption coefficient can be very large in proximity to the

IMT. We show that thermal control of the phase co-existence in the VO2 film enables

switching of the absorption from about 20% to 99.75% at λ = 11.6 µm. The absorption in

our device is greatly enhanced via critical coupling to a cavity resonance which is shown

to exist when the ultra-thin film has a large imaginary part of the refractive index. Our

device combines the deep-subwavelength thickness characteristic of nanostructure-based

perfect absorbers with the wide tuning capability typical of asymmetric FP cavities,

while comprising only a single film deposited on a reflecting substrate.

As in the section 2.2, we consider light incident from air (n1 = 1) onto a dielectric film

with complex refractive index n2+ ik2, deposited on a substrate with index n3+ ik3

(Fig. 2.24(a)). The reflection can be calculated as the coherent sum of the partial waves

reflected from the first interface (with reflection coefficient r0) and those reflected from

the cavity after 1, 2, ..., m roundtrips with reflection coefficients r1, r2, . . . rm. Eqn. 2.1

describes the reflectivity from this structure just as it did in the previous sections.

When k2 << n2 (0 in the case of the conventional AR coating), this a simple asymmetric

FP cavity. On resonance, light is stored for many optical cycles. If there are some losses

present, light is gradually absorbed as it circulates; most FP modulators and RCE

detectors operate in this manner. This is illustrated in Fig. 2.24(a), with a dielectric

film deposited on a higher index substrate. In the partial wave picture, the first reflection

r0 has a phase shift of π with respect to the incident wave and thus the corresponding

phasor points to the left, along the real axis in the complex plane (Fig. 2.24(b)). The

front facet reflection can be cancelled out if the partial waves emerging from the film

each have a phase shift of 0 and the phasor trajectory terminates at the origin; this

occurs when the thickness h of the dielectric is an odd integer multiple of λ/4n and the

reflectivity |r12|2 is equal to the effective bottom mirror reflectivity
∣∣r23e

2iβ
∣∣2, as can be
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Figure 2.24: (a) The reflection process from a quarter-wave film on a high index
substrate at normal incidence, showing the partial waves. Many multiple reflections
are involved. (b) Phasor addition diagram (the reflected partial waves are represented
in the complex plane) demonstrating that a properly-engineered quarter wave film on
a high index substrate can result in zero reflection via destructive interference. The
phase of the first partial wave r0 is π with respect to the incident wave, but the phase
of all of the other partial waves is 0. (c) Reflection process from a highly-absorbing
(k2 of the same order as n2), ultra-thin film. (d) Phasor diagram demonstrating that
a zero-reflection (and hence perfect absorption) condition is achievable if the complex
refractive index of the film has a large imaginary component. In this case, the phase
of r0 deviates significantly from π (the phasor is not along the horizontal axis) and a

small number of reflections is sufficient to cancel r0 and maximize absorption.

seen from Eqn. 2.1 [27]. These arguments also persist if the substrate is reflecting, in

which case some absorption (either in the substrate upon reflection or in the film) is

required if a minimum in reflectivity is to be achieved. Even if the substrate is a PEC,

with the proper value of k2 the reflectivity can go to zero, indicating perfect absorption

in the film.

The phasor diagram in Fig. 2.24(d) suggests another route to achieving the perfect

absorption condition, as previously shown in Section 2.2.4. The exact phasor trajectory

does not matter as it returns to the origin. One of the possible trajectories in which

the phase of r0 is not π is shown in Fig. 2.24(d). The interface reflection phase shifts

become substantially different from 0 and π when at least one of the materials has k

comparable to n. As a result a resonance can exist for a film that is much thinner

than the wavelength of light, and critical coupling to this ultra-thin resonance yields

a perfectly absorbing state (Fig. 2.24(c)). Our perfect absorber utilizes this condition
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to enhance absorption, using the intermediate state in the insulator-to-metal transition

(IMT) in VO2 to introduce a large, controllable degree of loss.

VO2 is a correlated oxide that undergoes a thermally triggered IMT near room tem-

perature (Tc ∼ 340K), which takes the material from an insulating state (band gap

of about 0.6 eV) to a metallic one. The IMT occurs gradually as the temperature is

increased: nanoscale islands of the metallic phase emerge in the surrounding insulating

VO2, which then grow and connect in a percolation process, leading to a fully metallic

state where the band gap has collapsed [52][53][54]. This metal-dielectric phase co-

existence within the phase transition results in widely-tunable optical properties; in fact

the naturally occurring nanoscale structures in the IMT region can be viewed as a re-

configurable disordered metamaterial. The IMT has been utilized for optical switching

[55][56], and has enabled several tunable devices comprising metallic nanostructures on

VO2 films [57][58][59]. VO2 is also the target of active research for the realization of

novel electronic switching devices that may complement MOSFET technology [54].

In general, probing the physics of this intermediate state is still in infancy because the

material quality of VO2 films has only recently been improved to the point where a

complex region such as the intermediate state of the phase transition can be explored

with reproducibility. The IMT in this material has been known for over 50 years, however

bulk crystals often crack during the transition due to stress (as is often the case for

brittle ceramics) [60]. Thin film structures can be made more robust to the stress

relaxation caused by substrate clamping; however careful thermal profiles composition

control are required to obtain reversible transition properties [61][62]. Studies on thin

film VO2 with reproducible phase transition properties can be considered an emerging

field and within that, the intermediate state (i. e. a mixture of metallic and insulating

states) is now being recognized as an opportunity, especially given recent interest in
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Figure 2.25: Complex refractive indices for sapphire and VO2 in the metallic (red),
insulating (blue), and intermediate (green) states, taken from Refs. [64] and [52].

metamaterials which often require composite structures comprising domains of sub-

wavelength dimensions with vastly different optical properties [63].

To implement an absorber that can be tuned between low and perfect absorption states,

we deposited a crystalline film of VO2 with a thickness of 180 nm on a c-plane sapphire

substrate. The VO2 thin film was grown on a single-side-polished c-plane sapphire

substrate (1 mm thick) using magnetron sputtering from a vanadium pentoxide (V2O5)

target at 550◦C under 10 mTorr pressure with 100 sccm argon (Ar) gas flow rate at a

power of 120 W. The thickness was checked with a scanning electron microscope (SEM)

after milling a cross-section with focused ion beam (FIB). For reference, literature values

for the complex refractive indices of VO2 and sapphire in the infrared are plotted in Fig.

2.25.

The absorption was investigated via normal incidence measurements using a Fourier

transform infrared (FTIR) spectrometer and mid-IR microscope (Fig. 2.26(a)). The

reflection spectrum was collected while gradually increasing the sample temperature

from 297 K to 360 K at 1 K increments (Fig. 2.26(b)). The sample was mounted
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on a temperature controlled stage (Bruker Optics A599) inside a mid-infrared (MIR)

microscope (Bruker Optics Hyperion 2000). A reflective objective (15X, NA = 0.4) was

used to focus an unpolarized beam from a MIR Globar source mounted in an Fourier

transform infrared (FTIR) spectrometer (Bruker Optics Vertex 70) onto the sample

from the VO2 side, with the reflected light collected by the same objective and sent

to a liquid nitrogen-cooled mercury-cadmium-telluride (MCT) detector. To normalize

the reflectance spectra, a reference spectrum was taken in transmission mode utilizing

a second identical objective to collect the light.

The 297 K curve is representative of the reflection spectrum at a temperature signif-

icantly below TC . Since insulating VO2 is transparent at photon energies below the

band-gap, the primary features of the room temperature reflection spectrum are due to

the underlying sapphire. Sapphire is highly absorptive at λ ≈ 5 - 10 µm despite its large

band gap in due to the presence of several phonon modes [53][18], which also result in

high reflectivity between 10 and 15 µm. The VO2 thickness is much smaller than the

wavelength of the incident light, so no FP fringes are observed. The small features at

approximately 3 µm, 4.5 µm, and 6 µm correspond to ambient atmospheric absorp-

tion. At high temperatures (e.g. 360 K curve in Fig. 2.26(b)), the VO2 is entirely in

the metallic phase, and displays relatively high reflectivity which slowly increases with

increasing wavelength, as expected for a Drude-like metal.

The reflectivity spectrum does not transition monotonically from that of the low-temperature

state to that of the high-temperature one due to the complex interplay between the ef-

fective medium formed when the VO2 is in an intermediate state and the underlying

sapphire substrate. In particular, we focus on the feature at λ ≈ 11.6µm (vertical dashed

line in Fig. 2.26(b)); at this wavelength, the reflectivity is approximately 0.7 with the

VO2 in the insulating state (at room temperature) due to the high reflectivity of the
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Figure 2.26: (a) Experimental setup. A sapphire substrate coated with h = 180
nm of VO2 is placed on a temperature-controlled stage mounted inside an infrared
microscope and illuminated at normal incidence using a mid-IR source. A mercury-
cadmium-telluride (MCT) detector is used to collect the reflected light. (b) Exper-
imental reflectivity spectrum at temperatures from 297 K to 360 K. At 343 K, the
reflectivity drops to approximately 0.0025 at λ = 11.6µm, indicated by the vertical
dashed line. (c) Experimental reflectivity from the sample at λ = 11.6µm as a function
of increasing (red) and then decreasing (blue) temperature. A 5 K hysteresis is seen
in the reflectivity. Inset: Normalized dc resistance of the VO2 thin film sample as a
function of temperature showing nearly four orders of magnitude of change in the re-
sistance and hysteretic behavior. (d) Calculated reflectivity spectrum at temperatures
from 295 K to 360 K using experimental values for the complex refractive indices of

VO2 [52] and sapphire [64]. The reflectivity of bare sapphire is shown in black.

underlying sapphire, and approximately 0.8 with the VO2 in the metallic state (T = 360

K). At T = 343 K, however, the reflectivity abruptly drops to approximately 0.0025,

corresponding to a reduction by a factor ≈ 280 with respect to the low-temperature

insulating state and by a factor ≈ 320 with respect to the high-temperature metallic

state. Since the sapphire substrate is opaque at this wavelength, this corresponds to

a 99.75% absorbance within the VO2 film and the top part of the substrate (1-2 µm),

as discussed later in the text. For reference, we replotted Fig. 2.26(b) in Fig. 2.27,
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Figure 2.27: Detailed plots of them measured reflectance of the VO2/sapphire sample
for increasing temperature. These figures separate out Fig. 2.26(b) so that it is easier

to read.

breaking up the curves so that the figure is easier to read. The reflectivity spectrum

has a hysteresis of approximately 5 K (Fig. 2.26(c)), comparable to the dc resistance

hysteresis width of the VO2 film (inset of Fig. 2.26(c)). The normalized dc resistance

R(T )/R(298 K) exhibits a change of more than three orders of magnitude between 298

K and 393 K.

To obtain the theoretical reflectivity of our device, we used Eqn. 2.1 with the temperature-

dependent complex refractive index for VO2 (for increasing temperature) experimentally

obtained by ellipsometry in Ref. [52], and the index for sapphire from Ref. [64]. The

calculated spectra match well with the experimental data across the entire λ = 2 - 15 µm

range (Fig. 2.26(b, d)), though the temperatures at which the various spectral features

occur differ by 2 - 5 degrees. We attribute the latter to the differences in the growth

conditions and film thicknesses between our VO2 sample and the one measured in (Ref.

[52]) [65]. The predicted reflectivity minimum is 0.0007 at λ = 11.75µm and T ≈ 342

K, compared to the experimental data which showed a minimum value of approximately

0.0025 at λ = 11.6µm and T = 343 K.

As in Section 2.2.4, we performed a set of calculations in which the VO2 film was replaced

with an unknown homogeneous dielectric of the same thickness, assuming only that it

has some complex refractive index ñ = n + ik. In Fig. 2.28, we plotted the calculated
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reflectivity using Eqn. (2.1) at λ = 11.75 µm as a function of n and k, covering a wide

range of potential values of ñ for the material comprising the thin film. The complex

index of sapphire at this wavelength was taken to be about 0.1 + 0.8i [64]. We found

that for ñ ∼= 3.25 + 1.5i, the calculated reflectivity drops to zero indicating critical

coupling, with approximately 90% of the light absorbed in the 180 nm film and the

remaining 10% absorbed in the top layer (1-2µm) of the underlying sapphire. This

reflectivity minimum is very broad in n−k space, making the phenomenon very robust;

as a result, small changes in the composition (and hence ñ) of the lossy dielectric will not

significant impact device performance. The spectral width of the absorption minimum at

the perfect absorption condition (≈ 3 µm full-width half-max) is determined primarily

by the dispersion of the materials comprising the absorbing layer and the underlying

substrate.

As shown in Fig. 2.24(c, d), the complex values of the refractive indices lead to non-

trivial reflection phase shifts (e.g. approximately 0.08π for the VO2/air interface and

-0.02π for VO2/sapphire at λ 11.75 µm) and substantial absorption as light propagates

through the lossy film. As a result of these high losses, all of the incident light is absorbed

after only a few passes through the thin film; R = |r|2already reaches about 0.0006 after

including just the m = {0, 1, 2, 3}terms in Eqn. 2.1.

Critical coupling to a cavity consisting of an ultra-thin absorptive film, a dielectric

spacer, and a quarter-wave stack reflector has been previously shown [43], to our knowl-

edge it has not been demonstrated for a resonator formed by an ultra-thin layer absorbing

layer on an opaque substrate. We additionally note that a distinct but related condition

for maximizing absorption has been recently theoretically proposed for a vanishingly-thin

film with n ≈ k embedded between two lossless dielectrics [66][67][68].
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Figure 2.28: (a) Map of the calculated reflectivity as a function of n and k, the real
and imaginary parts of the complex refractive index ñ, of a uniform dielectric film of
180 nm thickness on sapphire for λ = 11.75µ m. The reflectivity drops to zero for
ñ ∼= 3.25 + 1.5i. The black dashed line marks the trajectory of the complex refractive
index of VO2 with increasing temperature. The VO2 index passes very close to the

minimum reflectivity point in n-k parameter space (black dashed line).

Thermally tuning the phase co-existence in VO2 is equivalent to tracing out a path in

n-k space; this trajectory is plotted as a function of temperature in Fig. 3 (black curve)

using the data from Ref. [52]. We observe that at T ≈ 342 K, the index of VO2 passes

almost exactly through the point of low reflectivity, confirming our experimental data.

The phase transition in VO2 results in a very large change in its optical properties,

enabling a change in device reflectivity on the order of unity.

Calculations show that the spectral position of the absorption maximum can be tailored

over a significant portion of the 8 µm - 14 µm atmospheric transparency window by

changing the VO2 film thickness, making this geometry potentially useful for infrared

detection and imaging applications. The calculated absorption maximum occurs at

λ ≈ 10.5 µm for a 20 nm VO2 film on sapphire, and can be continuously red-shifted

with increasing VO2 thickness; for example, at h = 400 nm the dip is predicted to be at

λ ≈ 13.3 µm with R ≈ 0.09.

We also explore the behavior of our perfect absorber given oblique incident light. We
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Figure 2.29: Calculated reflection spectra from the 180 nm VO2 film on sapphire
(T = 342 K) for (a) s-polarized and (b) p-polarized incident light at various angles of

incidence

used Eqn. 2.1 to calculate the reflection spectra of our structure using the index for VO2

at T = 342 K for various angles of incidence for s- and p-polarized light (Fig. 2.29(a) and

(b), respectively). Very low reflectivity and high absorption values are observed over a

broad range of angles around our wavelength of interest (≈ 11.75 µm). Our calculations

show that the reflectivity remains under 0.01 for incident angles of 0◦ to 30◦ for both

s- and p-polarization. This low sensitivity to incident angle is a result of the small

propagation distance for light inside the VO2 film. We note that in our experiment, the

numerical aperture (NA) of the objective is 0.4 (corresponding to an acceptance angle of

approximately 24◦), which is the likely source of the discrepancy between the calculated

and measured reflection minima (0.0007 and 0.0025, respectively).

2.4.3 Potential applications of the VO2 perfect absorber

Thermal imagers are of increasing importance in numerous applications, from hyper-

spectral imaging to surveillance and medical devices. There is a need to reduce the

size of photodiode-based imagers, increase their pixel count, and operate them at non-

cryogenic temperatures. Modern uncooled microbolometers generally rely on detecting

small changes in the electrical resistance of materials whose electric properties vary as
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a function of temperature. Devices relying on thermal variations of electrical resistance

are essentially thermistors [69].

VO2 has long been investigated for applications in bolometers using the IMT [70], though

this approach is complex due to the presence of hysteresis [71]. Nonetheless, various

vanadium oxides (usually mixed valence VOx) are widely used for commercial bolometers

at temperatures away from the IMT (e.g. [72]). Recently, however, a bolometer based on

newly-discovered non-hysteretic behavior within the transition region has been proposed

[71], which may increase the temperature coefficient of resistance, leading to enhanced

detectivity. Combining this approach with the perfect absorber geometry demonstrated

in the present work could result in significantly improved infrared detection and imaging,

especially if a dopant is used to decrease the transition temperature of VO2 [65].

In order to extend the absorber concept demonstrated here to other spectral ranges, al-

ternate materials for either the substrate or the ultra-thin film can be used. VO2 films,

for example, can be grown on a number of substrates such as glass, silicon, germanium, ti-

tanium oxide and indium-tin-oxide (ITO) [54][73]. In general, tunable highly-absorptive

layers can be created using a variety of correlated oxides which exhibit phase co-existence

in the vicinity of phase transitions [54] as well as other phase change materials [74].

The absorber demonstrated here requires no nanofabrication steps beyond deposition

of the VO2 film, and thus can easily be made to cover a large area. The IMT in VO2

is known to occur on a picosecond timescale and can be triggered thermally, optically,

or electrically [54], making VO2-based components promising for future optoelectronic

devices including optical switches and modulators.
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2.5 Anomalous thermal emitter

Thermal radiation is light that is emitted by an object at a temperature above absolute

zero. The spectrum and intensity of thermal radiation emitted by an object is a function

of its temperature and emissivity, which is in general frequency (f) dependent. This is

expressed by:

I(K,T ) = 2hc
K3

ehcK/kBT − 1
ε(K) (2.2)

where I is the spectral radiance (or the spectral radiant energy density), K = f/c is

the spectroscopic wavenumber, T is the temperature expressed in Kelvin, h is Planck’s

constant, c is the speed of light in vacuum, kb is the Boltzmann constant, and ε(K)

is the frequency-dependent emissivity [75]. More specifically, the spectral radiance is

the radiant power emitted from a unit area of the source per unit solid angle, in the

wavenumber interval from K to K + dK, and has units of W cm−1. The factor in front

of ε(K) in Eqn. 2.2 is known as Planck’s law, and describes blackbody emission. For

most objects, ε(K) is largely independent of temperature (or other external variables

such as applied fields).

There is substantial interest in engineering ε(K)for applications ranging from incandes-

cent light sources [76] to heat management [77][78][79] to thermal tagging and imaging

[80]. In determining ε(K) for various materials and structures, frequent use is made of

Kirchhoff’s law of thermal radiation which states that the emissivity of an object ε(K)

is equal to its frequency-dependent absorptivity a(K) [75].

One approach to engineering ε(K) has been to select materials with appropriate mate-

rial dispersion to achieve selective thermal emission [81]. A complementary approach
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involves surface texturing, either disordered [76] or highly ordered in the case of grat-

ings [82] or photonic crystals [83]. Similarly, photonic cavities can enhance or suppress

thermal emission [84] [85]. More recently, optical antennas [86] and metamaterials [87]

have also been employed to tailor the directionality and spectrum of thermal emission.

In addition to these static schemes, certain tunable materials can be employed to dy-

namically manipulateε(K). Of particular interest are electrochromic materials such as

tungsten oxide (WO3), which undergoes significant change in optical and infrared prop-

erties under an applied voltage, and can therefore be used to modulate emissivity of

thermal radiators for applications such as temperature control of satellites by radiative

cooling [77][78].

Modulation of the emissivity can also be achieved by using thermochromic materials,

whose optical properties are temperature-dependent. Unlike in the case of electrochromic

materials, a change in temperature can simultaneously alter the emissivity ε(K,T ) of

the object incorporating a thermochromic material, and the blackbody contribution to

the spectral radiance K3/(ehcK/kBT − 1) (see Eqn. 2.2). A potential benefit of tuning

based on thermochromic materials is that it allows for passive “smart” devices that can

operate without the need for external power or controls. For example a radiator that

has low emissivity at low temperatures and high emissivity at high temperatures can

help keep heat in when cold and radiate heat away faster when hot, making it useful for

passively maintaining a desired temperature [79].

As discussed in the previous section, vanadium dioxide (VO2) is a thermochromic ma-

terial and, as with absorptivity and reflectivity, present literature on tuning an object’s

thermal emissivity using VO2 has largely focused on the considerable change of infrared
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optical properties between the extreme states of the phase transition – fully insulat-

ing, and fully metallic [79][88][89][90][91]. However, as we showed previously, very rich

physics can be found within the transition region itself, which can be harnessed to obtain

additional control over thermal emission properties.

In this section, we show that a geometry comprising a thin film of VO2 on a sapphire

substrate like the one in the previous section can exhibit “perfect” blackbody-like emis-

sivity (nearly 1) over a narrow range of frequencies when the VO2 is in its transitional

state and operates as a natural, tunable metamaterial, i.e. an effective medium with

widely-tunable infrared optical properties. As a result of this resonance in emissivity,

the sample displays substantial broadband negative differential thermal emittance; i.e.

as the sample is heated the thermal emission decreases.

In VO2 thin films, the IMT occurs gradually with increasing temperature: nanoscale

inclusions of the metallic phase emerge in the surrounding insulating-phase VO2, which

grow and connect in a percolation process, eventually leading to a fully metallic state at

the end of the transition [53][52]. These metallic inclusions are much smaller than the

scale of the wavelength at infrared frequencies, and thus VO2 can be viewed as a natural,

reconfigurable, disordered metamaterial with variable effective optical properties across

the phase transition. In the previous section, we utilized this unique temperature-

dependent dispersion of the effective medium to demonstrate that a film of VO2 with

thickness much smaller than the wavelength deposited on sapphire can operate as a

temperature-tunable absorber; in particular, nearly-perfect absorption was achieved at

a particular temperature for a narrow range of infrared wavelengths. The reflectivity

of such a device varies dramatically and non-monotonically across the phase transition,

with the strong absorption feature appearing during an intermediate state of VO2 as a

result of critical coupling to an “ultra-thin-film resonance”. Since ε(K) = a(K), such a
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thin-film VO2 / sapphire structure is expected to have an emissivity ε(K, T) that also

depends strongly and non-monotonically on temperature.

For this experiment, our sample consisted of an epitaxial VO2 film of approximately 150

nm in thickness, grown on a polished single crystal c-plane sapphire by RF-magnetron

sputtering with a V2O5 target (99.9% purity, AJA International Inc.). During film

growth, the substrate temperature and RF source gun power were kept constant at 550

°C and 125 W respectively. A mixture of 99.50 sccm Ar and 0.50 sccm O2 was used as

the sputtering gas, maintaining the total pressure at 10 mTorr.

We measured the thermal emission from our VO2/sapphire sample by mounting it on

a temperature-controlled stage, changing the temperature from 40 °C to 100 °C and

back down (resolution of 0.5 °in the range of 55 °C – 85 °C and 5 °outside of that,

waiting at least 60 seconds to allow the temperature to settle), and directly sending the

emitted light into a nitrogen-purged Fourier transform infrared (FTIR) spectrometer

(Bruker Vertex 70) equipped with a room temperature DTGS detector (Fig. 2.30). As

a reference, we replaced the sample with black soot [75], deposited onto a gold-coated

silicon wafer using a candle (deposition time >10 minutes). After deposition, the soot-

coated wafer was baked at 200°C for 30 minutes to remove any excess paraffin from

the candle. At moderate temperatures, candle-deposited soot is expected to have a

wavelength-independent emissivity ε between 0.95 and 0.98 in the infrared [92][93][94];

for this work, we assume ε = 0.96. Mid-infrared reflectance measurements taken using

a microscope (Bruker Hyperion 2000, NA = 0.4, 15X objective) confirmed that the soot

sample is a good blackbody reference (reflectance <0.01 with some light presumed to be

scattered; data not shown).
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Figure 2.30: Experimental setup. The VO2/sapphire sample is mounted on a
temperature-controlled stage, and the thermal emission is sent into an FTIR spec-

trometer equipped with a DTGS detector.

To obtain an accurate emission spectrum, we had to correct for the wavenumber-

dependent response of the optics of the FTIR spectrometer and the detector and also

account for the thermal emission from sources other than our sample [75][95]. In par-

ticular, both the detector and the optical components of the FTIR (the beamsplitter,

mirrors, etc) are all at room temperature, and all emit thermal radiation. Accounting for

these becomes more complicated in our case compared to more conventional emittance

measurements because our sample is partially reflective, and the reflectivity changes sig-

nificantly as a function of temperature which affects how much of the thermal radiation

emitted by the detector returns back to the detector.

A particular temperature-dependent measured spectrum S(K,T )can be broken down as

S(K,T ) = m(K,T )[I(K,T ) + binstr(K)− (1−R(K,T ))bdet(K)] (2.3)

whereI(K,T ) is the actual spectral radiance of the sample, m(K,T ) is the instrument

response transfer function including the effects of atmospheric absorption along the light

path between the sample and the detector, binstr(K) is the thermal contribution of the

instrument including emission from the optics and the walls of the FTIR spectrometer
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(but not from the detector), bdet(K) is the thermal emission from the detector, and

R(K,T ) is the reflectivity of the sample which can be temperature-dependent for ther-

mochromic materials. In our measurement, we assume that binstr(K) = 0 because our

DTGS detector is at the same temperature as the rest of the instrument, so there is no

net flow of thermal radiation between the detector and the optics and walls. There is

substantial radiation from the detector itself, so bdet(K) cannot be neglected, and a por-

tion of this radiation that enters the interferometer and reaches the sample is reflected

back toward the detector; this is accounted for by the (1−R(K,T )) term in Eqn. 2.3.

Because both our black soot reference and VO2/sapphire sample are opaque within the

wavelength range of interest (within the 5-15 µm range, sapphire is opaque as a result

of multiple phonon resonances which are present [7][18]), we can write the emissivity

asε(K,T ) = a(K,T ) = 1−R(K,T ), which simplifies Eqn. (2.3) to

S(K,T ) = m(K,T )ε(K,T )[IBB(K,T )− bdet(K)] (2.4)

where IBB(K,T ) is the thermal radiation spectrum from a perfect blackbody. Note that

it is important to select the appropriate units when representing the Planck distribution

function IBB(K,T ) as the expressions differ depending on which units are used, e.g.

wavenumber or wavelength. Since an FTIR yields spectra with constant resolution in

wavenumber [75], we choose to use wavenumber units (which are equivalent to frequency

units since K = f/c).

Given a reference sample with a known emissivity such as the black soot, one can

calculate m(K,T ) and bdet(K) by measuring the emitted spectrum at two different

temperatures T1 and T2, and solving the system of two equations. In our measurement,

however, this is unnecessary because ε(K,T ) is factored out in Eqn. (2.4). Instead we
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can note that given the measured spectra Ssample(K,T ) and Sref (K,T ) from our sample

and reference, respectively, and knowledge of the reference emissivity εref (K,T ), we can

immediately obtain εsample(K,T ) by

Ssample(K,T )

Sref (K,T )
=
εsample(K,T )

εref (K,T )
. (2.5)

This analysis method is applicable only to samples that are smooth (any roughness must

be on a substantially smaller scale than the wavelength of emitted light), which is the

case for our VO2/sapphire sample. For rough samples, not all of the light emitted by the

detector will be specularly reflected from the sample, and instead some thermal emission

from the surrounding area may be scattered into the beam path by the sample; in this

case extra care must be taken during data analysis.

We used Eqn. 2.5 to determine the experimental emissivity of our VO2/sapphire sample,

which is plotted for increasing temperatures in Fig. 2.31(a, b). From the experimental

emissivity, we calculated the spectral radiance I(K,T ) = ε(K,T )IBB(K,T ) of our black

soot reference and the VO2/sapphire sample, shown in Fig. 2.31(c) for three different

temperatures. It can be directly observed that while the thermal emission from the

black soot reference is monotonically increasing with increasing temperature, the emis-

sion from the VO2/sapphire sample first increases and then decreases. At a particular

temperature (approximately 74.5 °C) and wavelength (approximately 864 cm−1), the

emissivity approaches unity (Fig. 2.31), indicating that at that wavelength the sample

displays nearly “perfect” blackbody-like emission, corresponding to the “perfect absorp-

tion” condition. The peak in infrared emissivity is relatively broadband (about 200

cm−1), with the emissivity surpassing that of the black soot reference between 840 cm−1

and 885 cm−1. The emissivity exhibits hysteresis in temperature (Fig. 2.31(d)) due to
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Figure 2.31: (a, b) Experimentally-determined evolution of the VO2/sapphire emis-
sivity for increasing temperature, separated into ranges of 35 °C – 74.5 °C and 74.5 °C
– 100 °C for visual clarity. (c) Thermal emission density (spectral radiance) from black
soot (dashed lines) and our VO2/sapphire sample (solid lines) for three different tem-
peratures. The data were taken for increasing temperatures. (d) Thermal emissivity
of the VO2/sapphire sample at a wavenumber of 864 cm−1 for heating (solid line) and
cooling (dashed line), respectively. The dotted line denotes the assumed emissivity of

the black soot reference (ε = 0.96).

the intrinsic hysteresis in undoped VO2 [54]. Note that the data in Fig. 2.31(a, b) are

shown for increasing temperatures only.

We integrated I(K,T ) of the black soot and VO2/sapphire samples over the 8-14 µm

atmospheric transparency window and plotted it as a function of temperature in Fig.

2.32(a). Plotted this way, it is clear that while heating, the samples displays broadband

negative differential thermal emittance over the 73 °C – 85 °C temperature range while

heating, and over 68 °C – 80 °C while cooling. The magnitude of the effect is large:

over a ≈ 10◦ C temperature range the slope is even larger in magnitude than the black-

body slope, indicating that the VO2/sapphire sample has a larger negative differential
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Figure 2.32: (a) Emitted power of the VO2/sapphire sample integrated over the 8-14
µm atmospheric transmission window for heating (solid line) and cooling (dashed line),
compared to the emitted power from black soot. (b) The integrated emissivity of the
VO2/sapphire sample over the 8-14 µm wavelength range. (c). Infrared camera images

of the sample (diameter = 1 cm) for increasing temperatures.

thermal emittance than the blackbody positive differential thermal emittance over the

same temperature range. Imaging these samples with a thermal camera (FLIR Systems

Thermovision A40) confirms that due to the negative differential thermal emittance,

the sample appears cooler even as it is heating up (Fig. 2.32(c)). Using the camera,

some inhomogeneities in the thermal emittance of the film are visible, which likely result

from slight inhomogeneities in the temperature and gradual long-range variations in the

film thickness and roughness; these emittance inhomogeneities are amplified around the

phase transition temperature.
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The VO2/sapphire thin film geometry (and, more generally, any geometries incorporat-

ing VO2 with optical resonances in the infrared) is promising for a wide array of ap-

plications calling for tunable infrared emissivity, narrow-band “perfect” blackbody-like

emission, negative differential thermal emittance, emissivity hysteresis, or some combi-

nation thereof. As one example, the emittance profile shown in Fig. 2.32 can be utilized

to make a rewritable infrared “blackboard” by keeping the entire sample at the phase

transition temperature, and using a cold or hot probe (such as a laser beam or soldering

iron) to “write” messages by locally changing the emissivity. These persistent messages

could be viewed with a thermal camera but would otherwise be invisible. A digital

version of this device can be used as a rewritable infrared identification tag. As another

example, the structure can be used as a type of infrared camouflage: within the 85 to

100 °C temperature region, the total thermally emitted power remains roughly constant,

and therefore an infrared camera would not be sensitive to changes in temperature. The

width of this flat-emittance region can be extended by decreasing the sharpness of the

phase transition, which can be accomplished by introducing defects into the VO2 films

[96].

Depending on the application, the hysteresis intrinsic to VO2 can either be beneficial

(as in memory devices) or detrimental (for devices which require fast on/off switching).

Fortunately, a variety of methods to modulate the hysteresis width have been studied,

including engineering of the size and shape of grain boundaries [96] and stresses [97],

as well as the introduction of various metallic dopants [98][99]. The aforementioned

approaches have also been used to tailor the transition temperature of VO2 within the

0°C to 100°C range [96][97][98][99], further expanding the application space.

While our study is limited to thin films of VO2 on a sapphire substrate in the spectral

region where the complex refractive index of sapphire is similar to that of metals at
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visible or ultraviolet (UV) wavelengths due to the presence of strong phonon resonances,

a variety of other substrates can be used to engineer the wavelength of the peak in

emissivity resulting from the “ultra-thin-film resonance” in VO2. Both highly-doped

semiconductors and transparent conducting oxides (TCOs) have been shown to possess

complex refractive indices similar to that of sapphire at λ = 10-15 µm (or metals in

the visible/UV), and both can be engineered by modulating the doping [100], and are

thus ideal candidate substrates for tailorable thermal emitters based on ultra-thin films

of VO2 or another material. The thin-film resonance condition can be further modified

by introducing resonant metamaterials [57] or resonant optical antennas [101] on top or

within the ultra-thin layer.

Ultimately, anomalous thermal emission properties which rely on the presence of a

temperature-dependent emissivity such as the ones demonstrated in the present ex-

periment can also be realized by integrating thermochromic materials into any num-

ber of optical structures including photonic crystals [83][102] or artificial metamaterials

[87]. The inherent advantages of our thin-film geometry featuring a natural, disordered

metamaterial within the VO2 phase transition region are structural simplicity and ease

of fabrication which allow for the creation of large-area anomalous thermal emitters.

Nonetheless, emerging top-down and bottom-up fabrication methods may allow for the

creation of large-area anomalous thermal emitters which combine thermochromics such

as VO2 with photonic crystals and artificial metamaterials to provide additional design

degrees of freedom.

In conclusion, we have experimentally studied the infrared thermal emittance of a struc-

ture comprising a deeply-subwavelength thin film of vanadium dioxide (VO2) on a sap-

phire substrate. Within the phase transition region of its insulator-metal transition

(IMT), the VO2 film comprises nanoscale islands of insulator- and metal-phase VO2
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which create a natural, disordered metamaterial with tunable optical dispersion and

losses in the infrared, which leads to an absorption resonance within the film that ap-

pears and disappears upon temperature tuning. This resonance leads to a large peak in

infrared emissivity spanning about 200 cm−1, including a 50 cm−1 range over which the

emissivity of the VO2/sapphire sample is greater than that of black soot, a commonly

used blackbody-like emissivity reference. This emissivity peak remains significant even

when the emittance spectrum is integrated over the 8-14 µm atmospheric transparency

window, and as a result the sample also features a broad-temperature (>10 °C) region

of which it displays large negative differential thermal emittance such that the sam-

ple emits significantly less thermal radiation even as it is heated up. These anomalous

emittance properties can find uses in infrared camouflage, thermal regulation, infrared

tagging and identification, and other applications.

2.6 Additional discussion

In sections 2.2.4 and 2.4.1 we made the claim that the origin of the minimum in re-

flectivity (and hence maximum in absorbance) at the thin film is critical coupling to a

resonance in the film. It is worth exploring this further: is there really a resonance in

the film, and does a zero in the reflectivity necessarily correspond to critical coupling to

this resonance?

We must first properly define resonance. The Wikipedia article on “resonance” defines it

as “the tendency of a system to oscillate with greater amplitude at some frequencies than

at others. [...] At these frequencies, even small periodic driving forces can produce large

amplitude oscillations, because the system stores vibrational energy” [103]. According

to Yariv and Yeh’s Photonics, in an optical resonator, “the [resonance] frequencies are
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Figure 2.33: Schematics of a transmission line (a) or free space (b) terminated by a
resonator. Reproduced from [26]

determined by the condition that the complete round-trip phase delay of a resonant

mode be some multiple of 2π. [...] This requirement makes it possible for a stable

standing wave pattern to establish itself” [104]. This definition of an optical resonance

is fully consistent with the aforementioned general definition of resonance because the

greatest electric field amplitude will tend to occur when a field has the same phase upon

one round trip through the cavity, i. e. when there is a standing wave.

Next we must define the situation of “critical coupling to a resonance”. Haus defines

critical coupling as the situation when a waveguide (or free space, as in our case) is

terminated by a resonator (or optical cavity), as shown in Fig. 2.33, the incident light is

on resonance (no detuning from the resonant frequency), and the internal losses of the

resonator are exactly matched with the external losses which are related to the coupling

coefficient [26]. That means that a photon in the resonator that makes a single cycle

(oscillation) is equally likely to be absorbed as it is to leak out of the resonator. This

can be seen from the general expression for the complex reflection coefficient, which can

be written as [26]

r̃ =
(1/τe)− (1/τo)− i(ω − ωo)
(1/τe) + (1/τo) + i(ω − ωo)

(2.6)

where ω is the angular frequency, ωo is the resonance frequency, and 1/τe and 1/τo are

the rate of decay due to escaping power and the rate of decay due to internal losses,
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respectively. Clearly in order for the reflectivity |r̃|2 to vanish, the relations 1/τe = 1/τe

and ω = ωo must be satisfied, which is the definition of critical coupling.

With that definition of critical coupling to a resonator in mind, we now once again

explore the analytical equation that describes the reflectance of a three layer system

(Eqn. 2.1), which we reproduce below:

r̃ =
r̃12 + r̃23e

2iβ̃

1 + r̃12r̃23e2iβ̃
(2.7)

where r̃mn = (p̃m − p̃n)/(p̃m + p̃n), p̃m = ñm cos(θ̃m), β̃ = (2π/λ)ñ2h cos(θ̃2), θ̃m =

sin−1(sin(θ1)/ñm), λ is the free space wavelength, ñ2 = n2 + iκ2 is the complex index of

medium 2, h is the thickness of medium 2, and the total reflectance R = |r̃|2.

There are two limits of this equation that are interesting to explore. The first is the R = 0

condition which we term “perfect absorption” and is the one we are most interested in,

and the R → ∞ condition which we term “lasing threshold”. The lasing threshold

condition requires that the system have gain rather than loss, and that there is enough

of this gain to sustain light oscillation with no light input. Note that we are still firmly

in the realm of linear optics, so this is only valid precisely at threshold: any above-

threshold behavior is nonlinear as a result of gain clamping [105], and thus can not

simply be described by Eqn. 2.7.

The lasing condition R → ∞ occurs when the demoniator of Eqn. 2.7 goes to zero, so

1 + r̃12r̃23e
2iβ̃ = 0. By using r̃21 = −r̃12 we can rewrite this as

1 = r̃21r̃23e
2iβ̃ = |r̃21| |r̃23| ei(φ21+φ23)ei4π

h
λ
n2e−4π h

λ
κ2 (2.8)
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where r̃21 = |r̃21| ei(φ21) and r̃23 = |r̃23| ei(φ23).

Breaking this up into the real and imaginary parts yields an amplitude condition (Eqn.

2.9) and a phase condition (Eqn. 2.10) for lasing. α2 = 4πκ2/λ is the gain/loss coefficient

which is negative for gain and positive for loss, so it must be negative to meet the

amplitude condition for lasing. φprop = π
2

h
λ/(4n2) is the propagation phase through

thickness h of medium 2.

1 = r̃21r̃23e
2iβ̃ = |r̃21| |r̃23| ei(φ21+φ23)ei4π

h
λ
n2e−4π h

λ
κ2 (2.9)

φ21 + φ23 + 2φprop = 2πm (2.10)

m ∈ Z

From the phase condition in Eqn. 2.10 it is clear that the R → ∞ lasing condition

occurs precisely on resonance; that is, when the total round trip phase is a multiple of

2π, as expected.

Now we examine the R = 0 perfect absorption condition which we are more interested

in. This occurs when the numerator of Ref. 2.7 goes to zero, so we can write this

condition as

|r̃23| ei(φ23)ei4π
h
λ
n2e−4π h

λ
κ2 = |r̃23| e−4π h

λ
κ2ei(φ23+4π h

λ
n2) = |r̃21| ei(φ21) (2.11)

which can also be rewritten as separate amplitude (Eqn. 2.12) and phase (Eqn. 2.12)

conditions:

70



Chapter 2. Lossy optical coatings and perfect absorbers

|r̃21| = |r̃23| e−4π h
λ
κ2 = |r̃23| e−hα2 (2.12)

φ23 + 2φprop − φ21 = 2πm (2.13)

m ∈ Z

From Eqn. 2.13, it is immediatelly apparent that the R = 0 does not occur on resonance

unless φ21 = 0, which only occurs if ñ2 is purely real (i. e. medium 2 is lossless). So

unless the film is purely lossless, the condition corresponding to maximum absorption

is not the same as the condition corresponding to maximum field build up. It seems,

then, that since R = 0 does not occur on resonance, it may not be considered “critical

coupling” according to the definition of Haus [26]. Nethertheless, the derivation by Haus

seems to imply a relatively small amount of loss, so perhaps our R = 0 condition falls

under some sort of generalized definition of critical coupling. Ultimately this is just a

discussion about semantics, but the analysis in this section may contribute to the overall

understanding of these ultra-thin film, highly-lossy optical systems.
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Chapter 3

Controlling light propagation

with optical antenna metasurfaces

3.1 Introduction

In the context of physical optics the general function of most optical devices can be de-

scribed as the modification of the wavefront of light by altering its phase, amplitude, and

polarization in some desired manner. The class of optical components with a spatially

varying phase response includes lenses, prisms, spiral phase plates [106], axicons [107],

phase retarders, and more generally spatial light modulators (SLMs), which are able to

imitate many of these components by means of a dynamically tunable spatial phase re-

sponse [108]. Another broad class of optical components such as gratings and holograms

is based on diffractive optics [109], where diffracted waves from different locations on a

diffractive element interfere in the far-field (i. e. the Fraunhofer zone) to produce the

desired optical pattern. These optical components generally shape optical wavefronts by

relying on gradual phase shifts accumulated during propagation through different optical
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lengths. This approach has been generalized in the field of transformation optics [110]

[111] which utilizes composite materials with an engineered complex refractive index, or

“metamaterials”, to engineer the spatial distribution of refractive indices and therefore

bend light in unusual ways, enabling striking phenomena such as negative refraction,

subwavelength-focusing, and optical cloaking, among others [63] [112].

It is possible to break away from our reliance on the propagation effect and attain

new degrees of freedom in optical design by introducing abrupt phase changes into the

optical path (also abrupt amplitude and polarization changes, though these are more

easily achieved and therefore we mainly focus on the abrupt phase control) [113] [114]

[115] [116] [117] [118] [119]. This can be achieved by using the large and controllable

phase shift between the excitation and re-radiation of optical resonators. This approach

enables the design a new class of optical devices with pixellated phase elements, which are

thin compared to the wavelength of light. The choice of optical resonators is potentially

wide-ranging, from nano-cavities [73] [120], to nanoparticle clusters [121] and optical

antennas [122]. In principle even quantum dots, nanocrystals, or resonant molecules

could be used, though these are much more difficult to engineer. For our work, we

focused on optical antennas, due to their widely tailorable optical properties and the

ease of fabrication. In general, resonant behavior can be found for any type of vibration,

including mechanical, electrical, optical, and acoustic, among others, and can be utilized

in the manipulation of these various kinds of waves (e.g. [123] [124]).

Optical antennas are metal-based optical resonators that can manipulate manipulate

light on a subwavelength scale and have a wide range of potential applications [125]

[122] [126] [127] [128] [129] [130] [131] [132]. A commonly used definition from radio

and microwave antenna theory states that the purpose of an antenna is to convert the

energy of free space propagating radiation to localized energy “receiving antenna”),
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and vice versa (“transmitting antenna”) [133]. As such, one of the main themes of

previous research efforts has been the capability of optical antennas to efficiently capture

and concentrate light, enabling the enhancement of a variety of optical processes such

as raman scattering [130], second harmonic generation [131], and nonlinear four-wave

mixing [132].

We became interested in using optical antennas not in receiving or transmitting mode,

but in scattering mode whereby an antenna simultaneously receives and then re-emits

light. This process modifies the amplitude, phase, and polarization of an optical wave-

front and thus can be used to re-direct and otherwise control light. In particular, the

phase response of optical antennas has not been systematically studied prior to our work,

and it is this feature that enables fine control over the propagation of light.

In the majority of cases, optical antennas fall squarely within the realm of linear optics,

and can thus be modeled with conventional electromagnetic techniques such as the finite

difference time domain (FDTD) method and the finite element method (FEM) [134].

As as a result much modern research involving these and other plasmonic structures

revolves around using these solvers to predict and design the optical response. However,

this “brute force” type of modeling has two limitations: (1) it provides limited intuition

about the physics, making it difficult to design new structures in non-incremental ways

and (2) it is relatively slow and resource-intensive, making it difficult to explore large

parameter spaces.

Because of this, we developed several analytical or semi-analytical models which illus-

trate the physics behind the phase response of optical antennas. First, we use an analogy

to the impedance of electric circuit elements which provides some intuition about the the

charge, current, and near-field distributions of an optical antenna across a resonance (i.e.
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at different detunings). Then we develop simple one-dimensional and two-dimensional

“charged mass on a spring” oscillator models which explicitly separate the radiation

reaction damping and the Ohmic absorption damping mechanisms for each fundamental

eigenmode of an antenna. This model not only provides a simple way to understand

antennas with multiple resonances, but also yields insight to the absorption, scattering,

and near-field response of plasmonic structures in general.

After looking at these heuristic models, we develop two fully-analytical models based on

solving rigorous integral equations of antenna currents that consider retardation effects

and near-field interactions. We adapt methods used in radio frequency antennas for

optical frequencies, and verify the validity of our models by comparing the results with

full-wave FDTD simulations. After that, we explore the properties of V-shaped optical

antennas by mapping out their two plasmonic eigenmodes and polarization conversion

properties. These antennas are good examples of two-dimensional plasmonic structures

and are the building blocks of our metasurfaces, which are essentially phased optical

antenna arrays.

Wfter that, we discuss several applications of these metasurfaces, which are designed

to mold an incident wavefront into desired shapes over a propagation distance which is

smaller than or comparable to the optical wavelength. By using inhomogeneous arrays

of V-shaped optical antennas (which we sometimes refer to as ”optical phase discon-

tinuities), we demonstrate generalized laws of refraction and reflection at an interface,

tunable birefringence including background-free plasmonic wave plates, generation of

optical vortices that carry optical angular momentum, and flat, ultra-thin optical com-

ponents including lenses, axicons, and wave-plates. We conclude with some thoughts

about how to add dynamic tunability to optical antennas, with the ultimate goal of
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realizing fast, tunable metasurfaces for applications which include beam steering and

fast spatial light modulators.

3.2 Semi-analytical models

3.2.1 Heuristics

The phase shift between the scattered and incident light of an optical resonator sweeps

a range of approximately π across a resonance (from far below resonance to far above).

This π phase shift corresponding to a resonance is observed in many other physical sys-

tems between the response of a resonator and its driving force (e.g., when the frequency

of an applied force tunes over the resonant frequency of a mechanical harmonic oscillator

such as a mass on a spring). Befpre resorting to rigorous theoretical models or full-wave

simulations, we can gain a qualitative physical understanding by considering the phase

response of a linear optical antenna of length L. If the antenna is small compared to

the wavelength of light (i.e. L/λ0 << 1), its charge distribution instantaneously follows

the incident field (Fig. 3.1(a)), i.e., σ̃ ∝ Ẽinc = Einc exp(iωt), where σ̃ is the charge

density at one end of the antenna. This is referred to as the quasistatic limit. Therefore

the emitted electric field, which is proportional to the acceleration of the charges (as is

described by the classical Larmor formula [135]), is Ẽscat ∝ ∂2σ̃/∂t2 ∝ −ω2Ẽinc. That

is, the incident and scattered fields are π out of phase (also note that the ω2 in electric

field term becomes ω4 in intensity, which is the familiar fourth-order dependence of scat-

tered power on the frequency from Rayleigh scattering [136]). At the first order antenna

resonance which occurs when the length is approximately half of the wavelength (i.e.

L/λ0 ≈ 1/2), the incident field is in phase with the current at the center of the antenna

(Fig. 3.1(a)), i.e. Ĩ ∝ Ẽinc, and therefore drives the current most efficiently. As a result,
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Ẽscat ∝ ∂2σ̃/∂t2 ∝ ∂Ĩ/∂t ∝ iωẼinc, so the phase difference between Ẽscat and Ẽinc is

π/2. For a long antenna with length comparable to the wavelength (i.e. L/λ0 ≈ 1), the

antenna impedance (defined as the incident field divided by the current at the center

of the antenna) is primarily inductive, or Ĩ ∝ −iẼinc. Consequently, the scattered and

incident light are almost in phase, Ẽscat ∝ ∂Ĩ/∂t ∝ Ẽinc. So to summarize: for a fixed

excitation wavelength, the impedance of an antenna changes from capacitive, to resis-

tive, and to inductive cross a resonance as the antenna length increases, and a single

antenna resonance is able to provide a range of phase change at most π between the

scattered and incident light.

3.2.2 Single oscillator model for linear optical antennas

In this section, we describe a simple oscillator model for optical antennas and, in general,

any nanostructures supporting localized surface plasmon resonances (LSPRs) [138] [122].

The model treats the resonant, collective oscillations of electrons in the nanostructure

as a damped, driven harmonic oscillator consisting of a charge on a spring. Unlike

previously proposed oscillator models in which all damping mechanisms were combined

into a single loss term proportional to the charge velocity [139][140][141], we explicitly

account for two decaying channels for LSPR modes: free carrier absorption (internal

damping) and emission of light into free space (radiation damping) [114].

We begin by analyzing a system in which a charge q located at x(t) with mass m on

a spring with spring constant κ (Fig 3.2(a)) is driven by an incident electric field with

frequency ω, and experiences internal damping with damping coefficient Γa:

m
d2x

dt2
+ Γa

dx

dt
+ κx = qE0e

iωt + Γs
d3x

dt3
(3.1)
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Figure 3.1: Schematics showing the instantaneous distributions of charge, current
(big arrow through the antenna), and near-field (electric-field lines) of rod antennas
of different lengths at the instant in time when the incident electric field is upward
and has the largest amplitude. A perfectly conducting metal is assumed and antennas
are suspended in vacuum. The second panel shows that maximum amount of charges
accumulates at the ends of an antenna with length L << λ0 and the current flowing
through the antenna is zero. The third panel shows that the instantaneous current on
a resonant antenna with L ≈ λ0/2 is maximized and is in phase with the incident field,
while there is no charge accumulation at the ends. In the last panel, for an antenna with
L ≈ λ0, the charge accumulation is again maxized (but located at a distance of about
L/4 from the ends [137]) and there is no net current through the antenna. Assuming a
test point (a monitor) λ0/4 away from the antennas (indicated by the cross in the third
panel) and measure the phase difference ∆Φ between the antenna radiation at that
point and the incident field. By comparing the electric field lines around the antennas
and the instantaneous incident field it can be seen that ∆Φ is π, π/2, and 0 for the
three antennas with L << λ0, L ≈ λ0/2, and L ≈ λ0, respectively. (b) Amplitude
and phase response of a rod antenna as a function of antenna length calculated by
analytically solving Hallen’s integral equations for linear antennas [137]. The antenna
is suspended in vacuum and has a circular cross-section with an aspect ratio of 50 (i.e.
radius r = L/50). In this calculation, incident monochromatic light is incident normal
to the rod and is polarized along it. The scattered light is monitored in the far-field

along the direction of the incident light.
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In addition to the internal damping force Fa(ω) = Γadx/dt , the charge experiences an

additional force Fs(ω) = Γsd
3x
/
dt3 due to radiation reaction, where Γs = q2/6π0c

3.

This term describes the recoil that the accelerating charge feels when it emits radiation

that carries away momentum, and is referred to as the Abraham-Lorentz force or the

radiation reaction force [136]. Since classical laws of electrodynamics necessitate that

an accelerating charge release energy in the form of radiation, conservation of energy

implies that this charge must consequently lose kinetic energy. The form of the radiation

reaction force can be derived by applying an energy balance argument to the classical

Larmor formula for radiated power, and it can also be seen as the force which the field

produced by the charge exerts on the charge itself [142]. For our charge-on-a-spring

model, the radiation reaction term has to be included for physical consistency, and

cannot be absorbed into the internal damping coefficient Γa.

By assuming harmonic motion x(ω, t) = x(ω)eiωt we can immediately write down the

steady-state solution to Eqn. 3.1 as

x(ω, t) =
(q/m)E0

(ω2
0 − ω2) + i ωm(Γa + ω2Γs)

eiωt = x(ω)eiωt (3.2)

where x(ω) contains the amplitude and phase response of the oscillator and ω0 =√
k/m. The time-averaged absorbed power by the oscillator can be written as Pabs(ω) =

Fa(ω)∗(iωx(ω)), where Fa(ω)∗ is the complex conjugate of the internal damping force.

Similarly, the time-averaged scattered power by the oscillator is Pscatt(ω) = Fs(ω)∗(iωx(ω)).

Therefore we have:

Pabs(ω) = ω2Γa|x(ω)|2 (3.3)

Pscat(ω) = ω4Γs|x(ω)|2 (3.4)
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where

|x(ω)|2 =
(q/m)2E0

2

(ω0
2 − ω2)2 + ω2

m2 (Γa + ω2Γs)
2
. (3.5)

Our oscillator model can shed light on the relationship between the near-field, absorp-

tion, and scattering spectra in optical antennas. Broadly considering the study of local-

ized surface plasmon systems, a number of both near- and far-field quantities are used to

characterize plasmonic resonances with the most common ones being near-field enhance-

ment, and the absorption and scattering cross-sections (the last two are often combined

into an extinction cross-section). It has been observed that the wavelength dependence

of near-field quantities such as electric field enhancement can be significantly red-shifted

compared with far field quantities such as scattering [18] [19] [20] [21] [22] [23]. This

discrepancy has significant implications for plasmonic applications where care must be

taken to optimize the appropriate figure of merit for the wavelength of interest.

If we interpret the optical antenna as an oscillator that obeys the absove equations, we

can associate Pabs and Pscat in Eqns. 3.3 and 3.4 with the scattering and absorption spec-

tra of the antenna. Furthermore, we can calculate the near-field intensity enhancement

at the tip of the antenna as |Enear(ω)|2 ∝ |x(ω)|2 [122].

By examining Eqns. 3.3 and 3.4 and noting that Pscat ∝ ω2Pabs ∝ ω4|Enear(ω)|2 we

can deduce that the scattering spectrum Pscat(ω) will be blue-shifted relative to the

absorption spectrum Pabs(ω), which will in turn be blue-shifted relative to the near-field

intensity enhancement spectrum |Enear(ω)|2. This is in agreement with experimental

observations that the wavelength dependence of near-field quantities such as the electric-

field enhancement can be significantly red-shifted compared with far field quantities

such as scattering spectra [143][144][145][146][147][148]. These spectral differences can

also be clearly seen in finite difference time domain (FDTD) simulations of gold linear
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Figure 3.2: (a) Representation of an optical antenna in oscillator form, where q is
the charge, m is the inertial mass, and x(t) is the displacement from the equilibrium
position. (b) Schematics for FDTD simulations. A gold optical antenna (length L
= 1 µm, thickness t = 50 nm, width w = 130 nm) sits on a silicon substrate and is
illuminated by a normally incident plane wave polarized along the antenna axis. The
cross represents the point approximately 4 nm away from the antenna edge where the
near-field is calculated. Complex permittivity of gold is taken from Palik [64]. (c)
Scattering and absorption cross-sections as calculated via FDTD (dashed curves) and
the model (solid curves). (d) Near-field intensity calculated by the oscillator model
(solid curve) and via FDTD (dashed curve) at the location identified by the cross, with
the incident field subtracted off. (e) Oscillator phase (solid curve) and the phase of the

near-field calculated via FDTD (dashed curve).

antennas on a silicon substrate designed to resonate in the mid-infrared spectral range

(Fig. 3.2(b)). In Fig. 3.2(c-e), we show the scattering and absorption cross-sections, the

near-field intensity, and the near-field phase, respectively, for our antenna as calculated

by FDTD (dashed lines). We fit the simulation results presented in Fig. 3.2(c) with

Eqns. 3.3 and 3.4 to obtain the parameters q, m, ω0, and Γa. The resulting model is

able to explain the peak spectral position and general shape of the near-field intensity

(Fig. 3.2(d)), as well as the phase response of the antenna (Fig. 3.2(e)). Note that no

additional fitting was done to obtain the near-field curves in Figs. 3.2(d) and (e). This

result suggests that this model can predict the near-field amplitude and phase response

from experimental far-field spectra of antennas, which are much easier to obtain than

near-field measurements.

The parameters obtained from the fit are consistent with the interpretation that the
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Figure 3.3: Peak wavelengths of the near-field (red), absorption (black), and scatter-
ing (blue) of linear antennas (w = 130 nm, h = 50 nm, gold) of various lengths sitting

on (solid lines) and embedded in (dashed lines) a silicon substrate

driving and radiative damping of the antenna mode are due to conduction electrons in

the antenna. Our model shows that in LSPR systems the near-field, absorption, and

scattering spectra are all expected to peak at different frequencies and have distinct

profiles, which agree very well with electromagnetic simulations of plasmonic antennas

in the mid-infrared, and are consistent with experiments.

To further illustrate the spectral differences between our quantities of interest, in Fig.

3.3 we plot the wavelength peaks of the scattering (blue), absorption (red), and near-field

(black) spectra for antenna lengths from 0.5 µm to 1.5 µm both on a silicon substrate

(solid lines) and embedded in silicon (dashed lines). In both cases, the aforementioned

trend remains unchanged, with the near-field peak always red-shifted relative to the

absorption, and with both red-shifted relative to the scattering spectrum.
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3.2.3 Two-oscillator model for 2D structures supporting two orthogo-

nal plasmonic modes

To gain full control over an optical wavefront, we need a subwavelength optical element

able to tailor the phase of the radiated light relative to that of the incident light over

a range of 2π. Single oscillators such as the linear optical antennas shown in the last

section cannot be engineered in a way to provide an arbitrary phase response over the

entire 2π range, and can barely cover a range of π while maintaining a large scattering

cross-section (Figs. 3.2(c) and (e)), so a more elaborate oscillator element is required.

In this section, we show that an element consisting of two independent and orthogonally

oriented oscillator modes is sufficient to provide arbitrary amplitude and phase response,

and is therefore suitable for the creation of designer optical interfaces. We derive the

phase and amplitude properties of this two-oscillator system, and illustrate how the

phase coverage is extended due to the dual oscillator modes and a phase contribution

from a coordinate transformation [115].

We focus on lithographically-defined nanoscale V- and Y-shaped plasmonic antennas as

examples of two-oscillator systems. These antennas exhibit two non-interacting plas-

monic modes, each of which can be treated as an independent oscillator. We choose our

axes such that the two oscillators are oriented along x and y axes, respectively, with the

incident light propagating along z and its electric field oriented along an axis w, which

lies in the x-y plane at an angle θ from the y-axis (Fig. 3.4(b)). According to Eqn. 3.4

the fields scattered by the oscillators oriented along the x- and y-axis can be written

respectively as

Es,x(ω) = −Dx(~r)
√

Γs,xω
2x(ω) (3.6)
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Figure 3.4: (a) Charge-oscillator model for a two-oscillator element, where q is the
charge and m is the inertial mass. (b) Two coordinate systems related by a rotation
by angle θ. The x-y axes are along the two fundamental oscillator modes, the w-axis is
along the polarization of the incident field, and the v-axis is along the cross-polarization
direction with respect to the incident polarization. A V-shaped optical antenna is
a simple example of a plasmonic two-oscillator element. Its two orthogonal modes,
i.e., symmetric and antisymmetric modes, are shown respectively in (c) and (d). The
schematic current distribution on the antenna is represented in gray scale with lighter
tones indicating larger current density. The instantaneous direction of current flow is
indicated by arrows with gradient. (e) Calculated intensity (|E|2) of the field scattered
into the cross-polarization by individual oscillators representing the two modes of a V-
shaped antenna (dashed and dotted curves) with ∆ = 90◦ and h = 650 nm, and by the
two-oscillator system representing the V-antenna (solid curve) for = 45◦. Note that
the solid curve is not simply the sum of the dashed and dotted curves because of the
coherent addition of fields. (f) Phase of the field scattered into the cross-polarization by
the individual oscillators (dashed and dotted curves), and by the two-oscillator system

(solid curve).

Es,y(ω) = −Dy(~r)
√

Γs,yω
2y(ω) (3.7)

where Dx(y)(~r) contains the angular and radial dependence of the emitted field. In

general, light is scattered by our two-oscillator element into some elliptical polarization

state. We focus on light scattered only into the polarization state along the v-axis in

Fig. 3.4(b), which is the cross-polarized direction relative to the incident polarization.

The reason for this particular choice is two-fold; the first is a matter of experimental

84



Chapter 3. Controlling light propagation with optical antenna metasurfaces

convenience as it allows us to fully decouple the scattered light from the incident light

by simply filtering out the former with a linear polarizer. The second is more subtle;

as we will show, this configuration provides an additional phase shift which extends the

potential phase coverage of our elements to the full 2π range.

Given an incident field polarized along the w-axis (Fig. 3.4(b)), we wish to study

the component of the emitted field polarized along the v-direction We can break up

this polarization-conversion process into two steps: the in-coupling of incident light

into the two oscillator modes, and the out-coupling of cross-polarized light from the

oscillators. The in-coupling process depends on θ because it involves the projection of

the incident field along the two oscillator modes, i.e., E0,x = E0ŵ · x̂ = E0 sin(θ) and

E0,y = E0ŵ · ŷ = E0 cos(θ). For the out-coupling process, we project the field scattered

by each oscillator onto the v-axis (Fig. 3.4(b)):

Es,xv̂ · x̂ = −Dx(~r)
√

Γs,xω
2x(ω)E0,x cos(θ) (3.8)

Es,yv̂ · ŷ = Dy(~r)
√

Γs,yω
2y(ω)E0,y sin(θ) (3.9)

After summing these projections, the total cross-polarized field emitted by the structure

Es,v can be written as

Es,v(ω) = D(~r)
E0

2
sin(2θ)ω2

[√
Γs,xx(ω)eiπ +

√
Γs,yy(ω)

]
(3.10)

where we assumed that Dx(~r) ≈ Dy(~r) = D(~r), which is true for light emitted roughly

normal to the orientation of the two oscillators. Equation (3.10) provides a complete

85



Chapter 3. Controlling light propagation with optical antenna metasurfaces

description of the generation of cross-polarized light by our two-oscillator system.

A large class of plasmonic elements can support two orthogonally-orientated modes.

We choose V-shaped antennas consisting of two arms of equal length h connected at

one end at an angle ∆. They support “symmetric” and “antisymmetric” modes (Figs.

3.4(c) and (d)), which are excited by electric-field components parallel and perpendicular

to the antenna symmetry axis, respectively. In the symmetric mode, the current and

charge distributions in the two arms are mirror images of each other with respect to

the antenna’s symmetry plane, and the current vanishes at the joint that connects the

two arms (Fig. 3.4(c)). This means that, in the symmetric mode, each arm behaves

similarly to an isolated rod antenna of length h, and therefore the first-order antenna

resonance occurs at h ≈ λeff/2, where λeff is the effective wavelength [122]. In the

antisymmetric mode, antenna current flows across the joint (Fig. 3.4(d)). The current

and charge distributions in the two arms have the same amplitude but opposite sign,

and they approximate those in the two halves of a straight rod antenna of length 2h, and

the condition for the first-order resonance of this mode is 2h ≈ λeff/2. The calculations

of Fig. 3.4(e) indeed show that the two modes differ by about a factor of 2 in resonance

wavelength.

The calculated intensity |Es,v(ω)|2 and phase φ(ω) of the cross-polarized light Es,v(ω) =

|Es,v(ω)| eiφ(ω)for a representative V-antenna are plotted in Figs. 3(e) and (f). The

specific parameters Γa,i, Γs,i, mi, ω0,i(i ∈ x, y) for its two modes correspond to antenna

geometries specified in the caption of Fig. 3.4. As can be clearly seen from the black

curve in Fig. 3.4(f), our two-oscillator element is able to span twice the range of phase of

either single oscillator (dashed or dotted), even though the two oscillators are uncoupled.

This phase extension, which can be seen as the eiπ term in Eq. (3.10), is due to the
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fact that the projections of the scattered fields from the spatially-overlapped x- and

y-oriented oscillators onto the v-axis are opposite in phase (Fig. 3.4(b)).

Equation (3.10) encodes the θ-dependence of the polarization conversion properties with

a sin(2θ) term. No cross-polarized light is generated for θ = 0◦ or 90◦ when the incident

field is aligned along one of the two orthogonally-oriented modes, and maximum polar-

ization conversion is obtained for θ = 45◦. A feature of the two-oscillator element is that

the rotation of both oscillators relative to the incident polarization allows for control

of the scattering amplitude independent of the phase response or the linewidth of the

resonances. Within the 0-90◦ range, the θ-dependence in Eq. (3.10) only affects the

amplitude of Es,v, so θ can be used as a degree of freedom to control the cross-polarized

scattering amplitude of the two-oscillator element without altering its phase response.

Due to the sin(2θ) dependence, a rotation of the structure by 90◦ maintains the am-

plitude of cross-polarized scattering while adding an extra phase of π to the scattered

light. This feature is used in later sections to generate 8 distinct phase elements from

4 structures and allows us to construct antenna elements that are able to span the full

0-to-2π range in phase, while maintaining relatively large scattering amplitudes.

3.3 Analytical models for V-shaped optical antennas

In this section, we present two analytical models for solving the current distribution

and scattered fields of V-shaped antennas and in doing so obtain a detailed picture of

their near- and far-field properties. In particular, we are able to study the near-field

coupling between the two antenna arms, and accurately map the amplitude, phase,

and polarization of the antenna radiation. These modeling tools enable us to select

and assemble various V-shaped antennas into more complex optical components. We
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should emphasize that while these models are computationally-efficient and fast, they are

limited in application to V-shaped antennas embedded in a homogeneous environment.

By using these models together with certain approximations we are able to deduce the

optical response from these antennas on a substrate, but if we desire to study any other

type of antenna (e.g. a Y-shaped antenna, or any more complicated shape) via analytical

methods, new models must be developed.

Models describing the response of antennas have been extensively studied [137][149][150][151].

One of the main challenges is that the integral equations governing the behavior of an-

tennas have no exact analytical solutions. However, the integral equations can be solved

in an approximate way by following an iteration procedure developed in 1950s by King

[137]. Furthermore, with the development of numerical methods in the last few decades,

we can obtain accurate numerical solutions of the integral equations by using the method

of moments (MoM).

Our solutions follow the derivations presented in ref. [137] for solving Hallen’s integral

equation using the iteration method, and in ref. [151] for solving Pocklington’s integral

equation using the MoM. We derived the integral equations governing the behavior of

V-shaped cylindrical antennas, reduce the 2D problem to one dimension, and implement

a numerical solution based on the iteration method or the MoM. We obtain the current

distribution driven at the surface of the antenna by an incident excitation field. The

far-field scattered by the antenna in any direction, with amplitude, phase and polar-

ization information, is then calculated as the coherent sum of the fields scattered by a

series of infinitesimal current elements distributed along the antenna and having their

amplitude and phase given by the current distribution, using an analytical expression

for the radiation pattern of interfacial dipoles [152].
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Because the derivations are lengthy and themselves do not shed light on antenna behav-

ior, we do not reproduce them in this thesis. Instead the iteration technique derivation

can be found in the supplementary information of ref. [113], and the MoM derivation can

be found in the appendix of ref. [119]. We study how the methods and approximations

used for long-wavelengths apply to the mid-infrared spectral range, where plasmonic

properties play a significant role, by comparing the results of our analytical models with

the results of FDTD simulations. Our main goal in this section is to demonstrate fast

and efficient methods as alternatives to full-wave simulations to probe a large design pa-

rameter space, bringing techniques commonly used in the microwave and radio frequency

ranges into the optical regime.

The main approximation used in our derivations is the thin-wire approximation (a << λo

and a << h, with a being the antenna radius and h its arm length) which enables us

to consider the current distribution on the antenna to be purely axial and azimuthally

invariant [150][151]. While fully justified at long wavelengths, this approximation may

not necesarily hold for mid-infrared antennas for which typically λoa ≈ 50 and h/a ≈ 10.

Our first task is thus to validate our results by comparing them to the results of well

established simulation tools such as FDTD. We assume monochromatic light at λo =

7.7µm coming at normal incidence with respect to the antenna plane. We calculated the

amplitude and phase of the scattered light in the far-field, in the direction normal to the

plane of the antenna, for different antenna arm lengths h, ranging from 0.3 to 1.6 µm,

and different opening angles ∆, ranging from 0 to 180◦. The results are summarized in

Fig. 3.5 for the symmetric and antisymmetric plasmonic mode (see inset schematics).

We observe a good agreement between FDTD calculations and our calculations based

on the MoM and iteration method. The locations of the two modes are different with

respect to h because the physical length of the antenna for the two modes differs by a
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factor of 2. We also observe a phase shift approximately equal to π across the resonances,

as is expected across any resonance. We note that our calculations are in good agreement

with FDTD simulations for ∆ < 90◦ , where the shift of the resonance peaks occurs,

indicating that the interaction between the antenna arms is well accounted for in our

analytical models. These maps were obtained in about 20 seconds using the MoM, and

about half an hour using the iteration method on a desktop computer, compared to

about one month for the FDTD calculations.

Figure 3.5: The first, second, and third rows are, respectively, FDTD simulations,
method of momentums (MoM) calculations, and calculations following King’s iteration
method of the amplitude and phase responses of V-antennas. The first and third
columns are the amplitudes of the scattered light (|E|) as a function of the antenna
arm length h, and the angle between the antenna arms ∆, for the antisymmetric and
the symmetric modes, respectively. The second and fourth columns are the phases of
the scattered light for the antisymmetric and the symmetric modes, respectively. The

double arrows indicate the orientation of the two antenna modes.

Figure 3.6 shows the current distributions along the antenna as a function of arm length

h for the symmetric modes with ∆ = 45◦ and ((a) and (b)), and for the antisymmetric

modes with ∆ = 135◦ ((c) and (d)). We observe that the antenna resonances occur

when the length of the antenna equals an odd integer multiple of half of the effective
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wavelength, i.e., h ≈ Nλo/(2neff ) for the symmetric modes, and 2h ≈ Nλo/(2neff ) for

the antisymmetric modes, where N = 1, 3, 5, ... We also observe resonances when the

antenna length equals an integer multiple of the effective wavelength, i.e., h ≈ Nλo/neff ,

for the symmetric modes when ∆ is small (Fig. 3.6(a)). In straight rod antennas,

these resonances feature symmetric charge distribution (e.g., +-+) along the antenna

axis and cannot be excited by plane waves [153][154]. In the case of our V-antennas,

the coupling between the two arms breaks this symmetry so these resonances can be

optically addressed.

Figure 3.6: (a) Amplitude and (b) Phase of the current along an antenna with opening
angle ∆ = 45◦ and antenna arm length h varying from to 0.3 to 5 µm. The incident
electric field is polarized along the symmetry axis. The incident wavelength is λo = 7.7
µm. (c) and (d) are similar to (a) and (b) for an incident electric field polarized

perpendicular to the antenna symmetry axis and for an opening angle ∆ = 135◦.
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3.4 Characterization of V-shaped antennas: experiments

and simulations

We characterize the spectral response of these antennas by Fourier transform infrared

(FTIR) spectroscopy and numerical simulations. The gold V-shaped antennas fabricated

on silicon wafers have arm length h = 650 nm, width w = 130nm, thickness t = 60nm,

and opening angle ranging from 45◦ to 180◦ (Fig. 3.7). In Fig. 3.8, we mapped the two

oscillator modes of the antennas as a function of wavelength and opening angle ∆ by

showing the measured (a-c) and calculated (d-f) transmission spectra. The orientation

of the incident polarization is shown in the upper right corner. Figures 3.8(a) and (d)

correspond to excitation of only the x-oriented symmetric antenna mode, whereas (b)

and (e) correspond to the y-oriented antisymmetric mode, and (c) and (f) shows both

excited modes. The spectral position of these resonances are slightly different from the

first order approximation which would yield λx ≈ 2hneff ≈ 3.4 µm and λy ≈ 4hneff ≈

6.8 µm, taking neff as 2.6 [15-17], with the differences attributed to the finite aspect

ratio of the antennas and near-field coupling effects, which are especially strong for small

∆ when the arms are in closer proximity to each other, leading to a significant resonance

shift (Figs. 3.8(b) and (e)). All of the results of the experiment are reproduced very well

in simulations, including the feature at 8-9 µm due to a phonon resonance in the 2-nm

native silicon oxide layer on the silicon substrate, which is enhanced by the strong near

fields formed around the metallic antennas. In Figs. 3.8(b), (c), (e), and (f), a higher

order antenna mode is clearly visible at λo ≈ 2.7µm for large ∆.

We measured the generated cross-polarization using our FTIR setup in transmission

mode, inserting a polarizer after the sample at a 90◦ angle to the incident polarization.

The resulting spectrum for incident polarization 45◦ from the x-axis, normalized to the
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Figure 3.7: (a, b, c, d) SEM images of gold V-shaped antennas fabricated on a silicon
substrate with opening angles ∆ = 45◦, 75◦, 90◦, and120◦, respectively.

Figure 3.8: (a-c) Measured transmission spectra through the V-antenna arrays at
normal incidence as a function of wavelength and angle ∆ for fixed arm length h = 650
nm. The incident light is polarized (a) along the symmetry axis of the antennas, (b)
perpendicular to the symmetry axis, and (c) at a 45◦ angle. (e-g) FDTD simulations
corresponding to the experimental spectra in (a-c), respectively. The feature at δo =8-9

µm is due to the phonon resonance in the 2 nm SiO2 on the substrate.

light directly transmitted through the bare silicon substrate, is shown in Fig. 3.9(a). As

expected, the polarization conversion peaks in the 3–8 µm range, in the vicinity of the

two antenna resonances. The corresponding FDTD simulation is shown in Fig. 3.9(b),

and retains the same features as the experiment, though the simulated polarization

conversion spectrum is more clearly broken up into two resonances. The experimental

data show less of this separation probably due to inhomogeneous broadening in the

experiment due to fabrication imperfections, non-normal incident angle in our FTIR-

microscope setup (the numerical aperture of our Cassegrain microscope objective is 0.4),

and the limited coherence area of our thermal source.
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Figure 3.9: Experimental measurements (a), FDTD simulations (b), and MoM calcu-
lations (without considering the absorption of the SiO2 layer on the silicon substrate)
of the cross-polarized scattering for the V-antenna arrays in Fig. 3.7. The arrows

indicated the polarization of the incident and output light.

3.4.1 Effects of a finite substrate

In this section we briefly discuss a subtelty that we found by carefully comparing the sim-

ulations and experimental data on the spectral response of antennas. In fact, the results

of this section apply to most practical measurements of resonant plasmonic structures in

the laboratory, and thus have broad implications on the field of plasmonics; surprisingly

we did not find a similar discussion anywhere in the literature.

First we re-plot the data from Fig. 3.8 in Fig. 3.10 including both the color maps

and line-scans, showing both the experimental and the simulation data, as well as some

added details. Note that there are significant differences between the basic simulations

assuming an infinite substrate and the experimental data. In fact, in the experiment a

finite, 280 µm thick double-side polished silicon substrate is used; however, it is compu-

tationally intensive to include this large, finite slab in the simulations due to the high

resolution required to model the nanoscale antennas. The polarization-conversion re-

sult shown as the black curve in Fig. 3.10(e) is a result of such a complete simulation

and matches quite well the experimental measurements, but all of the other simulations

presented in this article are performed using an infinite silicon substrate.

94



Chapter 3. Controlling light propagation with optical antenna metasurfaces

Figure 3.10: (a, b). Color maps showing the measured extinction (defined as 1 -
Transmission) spectra through arrays of lithographically-defined V-antennas (L ≈ 650
nm, ∆ from 45◦ to 180◦) for x- and y-oriented incident polarizations, respectively. (c).
Color map showing the polarization conversion efficiency spectra corresponding to (a,
b) when the incident field is polarized at a θ = 45◦ angle between both principle axes.
(d). Blue and pink curves are the measured extinction through the V-antenna array
with ∆ = 90◦ for the x-oriented (blue) and y-oriented (pink) incident polarization
for every antenna. The black curve is the polarization conversion efficiency from the
array for θ = 45◦. All three curves correspond to line scans of (a-c), shown by the white
dashed line. (e). FDTD simulations corresponding to the curves in (d), with the dashed
curves representing simulations with an infinitely thick substrate and the solid black
curve representing the calculated polarization-conversion efficiency when the finite (280
µm) thickness of the substrate is accounted for. (f). Measured polarization conversion
efficiency at λ = 4 µm plotted vs. the incident polarization angle θ (blue symbols) and
a fit to a sin2(2θ) dependence as predicted by Eqn. 3.10. The calculated correlation
R is 0.997. (g). Phase response of the cross-polarized light generated by the antennas
as calculated by FDTD (black). The blue and pink curves represent the phases of the
contributions from the symmetric and antisymmetric modes, respectively. Brightness
of the phase curves indicates the intensity of the scattered light. (h). SEM image of

the ∆ = 90◦ V-antenna array and the coordinate system.
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The finite extent of the substrate in the experiment significantly changes the spectrum

of our metallic nanostructures. Because light can be reflected from both interfaces of

the silicon wafer, a Fabry-Perot-type cavity is formed within the wafer, and the light

which is trapped within this cavity affects the scattered fields from the antennas.

It is possible to account for this effect in FDTD simulations by simply introducing the

finite substrate into the geometry. However, due to the differences in scale between

the antennas (tens to hundreds of nanometers) and the substrate thickness (hundreds of

microns), these simulations are exceptionally time- and resource-consuming. As a result,

it is impractical to replace all of the simulations in Figs 3.8 and 3.10 with ones taking

into account the finite substrate. Instead, we performed one such simulation to correct

the simulated spectrum of Fig. 3.10(e) and demonstrate how the substrate generally

alters the spectrum of our antennas.

The resulting polarization-conversion spectrum is re-plotted in Fig. 3.11(a). The main

effect of the substrate is the broadening of the antenna resonances and the washing out of

the dip in the polarization-conversion spectrum. In principle this effect can be beneficial

because it increases the effective bandwidth of our antennas, and can be explained as

follows.

A substrate with finite thickness behaves as a Fabry-Perot resonator, which enhances the

scattering efficiency of the antennas into the air side by feeding back some of the energy

which would have otherwise been scattered away into the substrate side. In proximity

of the resonance frequency of antennas, the scattering by the antennas is maximized,

and since it is a loss channel for the Fabry-Perot resonator, the intensity build-up within

the substrate is minimized. Therefore, the scattering enhancement into the air provided

by the Fabry-Perot modes is also minimized. At frequencies away from the antenna
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resonances the scattering cross-section of the antennas decreases, allowing more energy

to be stored in the substrate. Consequently, this provides a larger enhancement to

scattering from the antennas.

This effect serves to flatten out the scattering spectrum of our antennas, washing out

features such as the dip around 4.5 µm expected in presence of an infinite substrate (Fig.

3.11(a)). In the simulated spectrum that takes into account the effect of finite substrate

thickness (Fig 3.11(a) black curve), the Fabry-Perot fringes have been low-pass filtered

to reproduce the effect of the finite numerical aperture (0.4) of the objective in the

experimental setup, along with the finite spectral resolution of the measurement. Due

to the large order of the cavity (the thickness is much larger than the wavelength), small

numerical apertures are sufficient to filter out most of the Fabry-Perot fringes. However,

low-pass filtering does not eliminate the overall scattering enhancement provided by

the Fabry-Perot modes. As shown in Fig. 3.10, this calculated spectrum matches well

with the experimental data. For completeness, we show in Fig. 3.11(b) the expected

spectrum for zero numerical aperture, where the Fabry-Perot fringes are shown, as well

as the spectrum normalized to the average intensity (Fig. 3.11(c)), which shows that

the energy density inside slab (represented by the relative amplitude of the Fabry-Perot

fringes) is minimized in the vicinity of the antenna resonances.

Figure 3.11: (a) Polarization conversion spectrum from a V-antenna array (repro-
duced from Fig. 3.10(e)) as calculated by FDTD with a 280 µm-thick substrate (black)
and an infinite substrate (blue). The finite substrate curve was smoothed with a low-
pass filter. (b) Raw polarization conversion spectrum from the simulation without the
filter. (c) The curve in (b) divided by its low-pass-filtered version which shows the

relative amplitude of the fringes.
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3.5 Generalized laws of reflection and refraction

3.5.1 Anomalous reflection and refraction

In this section, we show a dramatic demonstrations of controlling light using the tunable

phase shift between the emitted and incident radiation of optical resonators; that is, a

linear phase variation along an interface introduced by an array of phased optical anten-

nas leads to anomalously reflected and refracted beams in accordance with generalized

laws of reflection and refraction.

The path that light takes as it propagates through a medium can be predicted by

Fermat’s principle, which states that the trajectory taken between two points A and B

by a ray of light is that of least optical path,
∫ B
A n(~r)dr, where n(~r)is the local index of

refraction. Light chooses this least path from point A to B because it lies at an extremum,

where the derivative of the optical path length, or equivalently the accumulated optical

phase
∫ B
A dϕ(~r) =

∫ B
A kon(~r)dr, with respect to infinitesimal variation of the path is zero.

Light waves that stay close to this variationally stable path arrive at their destination

with nearly the same phase and therefore interfere constructively, whereas all other paths

interfere destructively. In this sense, Fermat’s principle can be stated as the principle of

stationary phase [1][155][156], which is actually the most general and applicable form of

Fermat’s principle (on the other hand the weaker form of Fermat’s principle, the principle

of least time, can not properly predict all of the light paths for certain simple situations

such as light reflecting off a mirror). Now suppose an abrupt, spatially varying phase

shift Φ(~rs) is introduced in the optical path by suitably engineering the interface between

two media, which depends on the coordinate ~rs along the interface. If we then apply

Fermat’s principle of stationary phase, then the total phase shift Φ(~rs) +
∫ B
A kon(~r)dr

must be stationary for the actual path that light takes. As a result, the reflected and
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refracted paths may no longer be the same as that of the interface without these phase

discontinuities.

Figure 3.12: Schematics used to derive the generalized Snell’s law of refraction. The
interface between the two media is artificially structured in order to introduce an abrupt
phase shift in the light path, which is a function of the position along the interface. Φ

and Φ+dΦ are the phase shifts where the two paths cross the boundary.

Consider an incident plane wave at an angle θi. Assuming that the two paths are

infinitesimally close to the actual path that light takes (Fig. 3.12), then the phase

difference between them is zero such that

[koni sin (θi) dx+ (Φ + dΦ)]− [kont sin (θt) dx+ Φ] = 0 (3.11)

where θt is the angle of refraction, Φ and Φ+dΦ are, respectively, the phase shifts

at the locations where the two paths cross the interface, dx is the distance between

the intersections, ni and nt are the refractive indices of the two media. If the phase

gradient along the interface is designed to be constant, the previous equation leads to

the generalized law of refraction (i.e. a generalized Snell’s law)

sin (θt)nt − sin (θi)ni =
λo
2π

dΦ

dx
(3.12)
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Equation (3.12) implies that the refracted ray can have an arbitrary direction, provided

that a suitable constant gradient of phase discontinuity along the interface (dΦ/dx) is

introduced. Because of the non-zero phase gradient in this modified Snell’s law, the

two angles of incidence ±θi lead to different values for the angle of refraction. As a

consequence, there are two possible critical angles for total internal reflection, provided

that nt <ni

θc = arcsin

(
±nt
ni
− λo

2πni

dΦ

dx

)
(3.13)

Similarly, for the reflected light we have

sin (θr)− sin (θi) =
λo

2πni

dΦ

dx
(3.14)

where θr is the angle of reflection. There is a nonlinear relation between θr and θi, which

is dramatically different from conventional specular reflection. Equation (3.14) predicts

that there is always a critical incidence angle

θ′c = arcsin

(
1− λo

2πni

∣∣∣∣dΦ

dx

∣∣∣∣) (3.15)

above which the reflected beam becomes evanescent.

As shown in previous sections, the phase shift between the scattered and the incident

radiation of an optical antenna changes across a resonance. By tailoring the geometry of

the antennas and hence their phase response as a function of position on the interface,

one can introduce a linear phase shift along the interface and thus mold the wavefront

of the reflected and refracted beams in nearly arbitrary ways. The spacing between the

antennas in the array should be sub-wavelength to provide efficient scattering and to
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prevent the apperance of multiple diffraction orders. However this spacing should simul-

taneously not be so small that strong near-field coupling between neighboring antennas

would perturb their phase responses (in general one could also make strongly coupled

antennas and properly engineer their near-field coupling such that the spatially varying

phase is still maintained, but this is a much more difficult design problem). Note that

due to the discreteness in our approach to approximate the linear phase distribution,

in general there will always be regularly reflected and refracted beams, which follow

conventional laws of reflection and refraction (i.e., dΦ/dx=0 in Eqs. (3.12) and (3.14)).

The antenna packing density controls the relative amount of energy in the anomalously

reflected and refracted beams.

Figure 3.13 shows the amplitude and phase responses of gold V-antennas calculated

using the previously discussed analytical iteration method. The antenna symmetry

axis is along 45◦ direction so that both the symmetric and antisymmetric plasmonic

modes are excited, given a vertical incident polarization (Fig. 3.13(a) inset). As a

result of the modal properties of the V-antennas and the degrees of freedom in choosing

antenna geometry (h and ∆), the cross-polarized scattered light can have a large range

of amplitudes and phases for our chosen wavelength λo = 8 µm. We chose four antennas

indicated by circles in Fig. 3.13, which provide an incremental phase of π/4 from left to

right and almost equal scattering amplitudes for the cross-polarized scattered light.

Phase shifts covering the entire 0-to-2π range are needed to provide full control of the

wavefront. We take the mirror structure (Fig. 3.14(a) lower panel) of an existing V-

antenna (Fig. 3.14(a) upper panel) (or rotate the original antennas clock-wise by 90◦)

so that the cross-polarized emission has an additional π phase shift. This is evident by

observing that the currents leading to cross-polarized radiation are π out of phase in

the two panels of Fig. 3.14(a). A set of eight antennas are thus created from the initial

101



Chapter 3. Controlling light propagation with optical antenna metasurfaces

Figure 3.13: Analytically calculated amplitude and phase shift of the cross-polarized
scattered light for gold V-antennas at λo = 8 µm. The four circles in the figures indicate

the values of h and ∆ used in experiments.

four antennas shown in Fig. 3.13, and by periodically arranging these eight antennas

we created metasurfaces that can imprint a linear phase shift to the optical wavefronts.

A representative fabricated sample with the densest packing of antennas is shown in

Fig. 3.14(b). FDTD simulations confirm that the amplitudes of the cross-polarized

radiation scattered by the eight antennas are nearly equal with phases in π/4 increments

(Fig. 3.14(c)). The periodic antenna arrangement is used here for convenience, but is

not necessary to satisfy the generalized laws of reflection and refraction. It is only

necessary that the phase gradient is constant along the plasmonic interface and that

the scattering amplitudes of the antennas are all equal. The phase increments between

nearest neighbors do not need to be constant, if one relaxes the unnecessary constraint

of equal spacing between nearest antennas.

We used a setup illustrated in Fig. 3.15(a) to demonstrate the generalized laws of reflec-

tion and refraction. Large arrays (230 µm by 230 µm) like the one shown in Fig. 3.14(b)

were fabricated to accommodate the size of the plane-wave-like excitation (beam radius

of approximately 100 µm). Figure 3.15(b) summarizes the experimental results showing

ordinary and anomalous refraction for six samples with different Γ at normal incidence.

The sample with the smaller Γ corresponds to a larger phase gradient and more efficient
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Figure 3.14: (a) V-antennas (upper panel) and their mirror structures (lower panel).
The horizontal components of the scattered electric field in the two cases have a π phase
difference. (b) SEM image of a metasurface consisting of a phased optical antenna array
fabricated on a silicon wafer. The metasurface can introduce a linear phase distribution
along the interface and is used to demonstrate the generalized laws of reflection and
refraction. The unit cell of the structure (highlighted) comprises eight gold V-antennas
of width of approximately 220 nm and thickness of approximately 50 nm and it repeats
with a periodicity of Γ = 11µm in the x-direction and 1.5µm in the y-direction. The
antennas are designed to have equal scattering amplitudes and constant phase difference
∆Φ = π/4 between neighbors. (c) FDTD simulations of the scattered electric field for
the individual antennas composing the unit cell. Plots show the scattered electric field
polarized in the x-direction for y-polarized plane wave excitation at normal incidence
from the silicon substrate. The silicon substrate is located at z ≤ 0. The antennas
are equally spaced at a sub-wavelength separation Γ/8, where Γ is the unit cell length.
The tilted white straight line is the envelope of the projection on the x-z plane of the
spherical waves scattered by the antennas. On account of Huygens’s principle, the
anomalously refracted beam resulting from the superposition of these spherical waves
is then a plane wave that satisfies the generalized law of refraction (Eq. (3.12)) with a

phase gradient |dΦdx| = 2π/Γ along the interface.
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light scattering into the cross-polarized anomalous beams. We observed that the angles

of anomalous refraction agree well with theoretical prediction (Fig. 3.15(b))

θt,⊥ = arcsin [nSi sin(θi)− λo/Γ] (3.16)

which is obtained by substituting into Eq. (3.12) −2π/Γ for dΦ/dx and the refractive

indices of silicon and air (nSi and 1) for ni and nt. Our FDTD simulations indicate that

the scattering cross sections σscat of the antennas range from 0.7 to 2.5 µm2, which is

comparable to or smaller than the average area each antenna occupies, σaver (i.e., the

total area of the array divided by the number of antennas). Therefore, it is reasonable to

assume that near-field coupling between antennas will introduce only small deviations

from the response of isolated antennas. Simulations also shows that the absorption

cross-sections σabs are 5-7 times smaller than σscat, indicating relatively small Ohmic

losses in the antennas at mid-infrared wavelength range.

Figures 3.15(c) and (d) show the angles of refraction and reflection, respectively, as a

function of θi for both the silicon-air interface and the metasurface. In the range of θi =

0-9◦, we see negative angles of refraction and reflection for the cross-polarized scattered

light (schematics are shown in the lower right insets of Figs. 3.15(c) and (d)). The

critical angle for total internal reflection is modified to about −8◦ and +27◦ for the

metasurface in accordance with Eq. 3.13 compared to ±17 degrees for the silicon-air

interface; the anomalous reflection does not exist beyond θi = −57◦.

We note that antenna arrays in the microwave and millimeter-wave regime have been

used for the shaping of reflected and transmitted beams in the so-called reflectarrays

and transmitarrays [157] [158] [159] [160]. There is a connection between that body
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Figure 3.15: (a) Schematic experimental setup for y-polarized excitation (electric
field normal to the plane of incidence). (b) Measured far-field intensity profiles of
the refracted beams for incidence normal to the interface. The gray and black curves
are measured with and without a polarizer, respectively, for six samples with different
Γ. The amplitude of the gray curves is magnified by a factor of three for clarity.
The polarizer is used to filter out the anomalous refraction. The arrows indicate the
calculated angles of anomalous refraction according to Eq. 3.16. (c) Angle of refraction
versus angle of incidence for the ordinary and anomalous for the sample with Γ =
15 µm. The curves are theoretical calculations using the generalized Snell’s law for
refraction (Eq. (3.12)) and the symbols are experimental data. The two arrows indicate
the modified critical angles for total internal reflection. The shaded region represents
“negative” refraction for the cross-polarized light as illustrated in the inset. (d) Angle
of reflection versus angle of incidence for the ordinary and anomalous reflection for
the sample with Γ = 15 µm. The upper left inset is the zoom-in view. The curves
are theoretical calculations using Eq. (3.14) and the symbols are experimental data.
The arrow indicates the critical incidence angle above which the anomalously reflected
beam becomes evanescent. The shaded region represents “negative” reflection for the

cross-polarized light as illustrated in the lower right inset.
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of work and our results in that both use abrupt phase changes associated with an-

tenna resonances. However the generalization of the laws of reflection and refraction we

present is made possible by the deep-subwavelength thickness of our optical antennas

and their subwavelength spacing. It is this metasurface nature of the plasmonic inter-

face that distinguishes it from reflectarrays and transmitarrays, which typically consist

of a double-layer structure separated by a dielectric spacer of finite thickness, and the

spacing between the array elements is often not subwavelength.

The antenna designs in Fig. 3.14(b) are relatively broadband, i.e., they provide ap-

proximately 0-to-2π phase coverage with approximately π/4 intervals over a wide range

of wavelengths. Figure 3.16(a) shows experimental results of ordinary and anomalous

refraction for normally incident light with 5 different wavelengths. There are four sam-

ples with unit cell length Γ ranging from 11 µm to 17 µm, corresponding to different

phase gradients. For all samples and all excitation wavelengths, we observe anomalously

refracted beams away from the surface normal by an angle − arcsin(λo/Γ), predicted by

the generalized laws. Most importantly, we see negligible intensity at +arcsin(λo/Γ),

indicating that the interfaces operate in the “metamaterial” regime and do not function

like a grating with periodicity Γ. The reason for this broadband behavior can be under-

stood by looking at the phase responses of the 8 constituent antennas (Fig. 3.16(b)).

Although the antennas were designed to generate anomalous beams at λo = 8 µm, their

phase responses, in terms of both the total phase coverage and the incremental phase

between neighbors, do not vary too much over a large range of wavelengths from λo =

6 to 14 µm.
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Figure 3.16: (a) Experimental results showing anomalous refraction (θt < 0) from
metasurfaces with various phase gradients (from 2π/11µm to 2π/17 µm) at different
wavelengths (from 5.5 µm to 9.9 µm), as well as the ordinary refraction (located at θt =
0), given normal incidence excitation. (b) FDTD simulations of the phase responses
of the 8 antennas in Fig. 3.14(b) at wavelengths ranging from 4 to 20 µm. The phase
response is roughly linear from 0 to 2π for wavelengths from λo = 6 to 14 µm. For
clarity we use the phase of the first antenna as the reference and thus set it to zero.

3.5.2 Out-of-plane reflection and refraction

A feature of the conventional laws of reflection and refraction is that the incident, re-

flected, and transmitted beams lie in the same plane, which is usually called the plane

of incidence. Recent research on metamaterials and in particular on left-handed optical

materials has shown that even if light can be refracted in unusual ways, the refraction

angle is still described by the traditional form of Snell’s law, albeit with a negative index

of refraction [161][162][163][164][165]. In this section, we derive laws of reflection and

refraction in three dimensions, applicable to the case in which interfacial phase gradient

does not lie in the plane of incidence, leading to reflection and refraction directions that

deviate from the plane of incidence [118].

Once again we use the principle of stationary phase to derive the reflection and refraction

laws, this time in three dimensions. Suppose the two paths in Fig. 3.17(a) are infinites-

imally close to the actual optical path,so
∫
A ϕ(~r)d~r =

∫
B ϕ(~r)d~r, where the integrals are

along the paths through point A and B on the interface, respectively. The equation can
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be rewritten as

(∫ A

Pi

~ki · d~r −
∫ B

Pi

~ki · d~r
)

+

(∫ Pt

A

~kt · d~r −
∫ Pt

B

~kt · d~r
)

+
d~Φ

dr
· (~rA − ~rB) = 0 (3.17)

where ~ki (~kt) is the wavevector of light in the medium of index ni (nt) and ~rA (~rB) is

the position of A (B) on the x-y plane. For constant phase gradients, the accumulated

phase of rays intersecting the interface is a convex downward function for all values of

x and y [16], so we can rewrite the stationary phase condition in Eq. 3.17 for the x and

y spatial coordinates independently


kx,t = kx,i + dΦ

dx

ky,t = ky,i + dΦ
dy

(3.18)

By considering two infinitesimally close paths separating two points located in the same

medium one can immediately see that a similar equation holds for the wavevector com-

ponents kx,r and ky,r of the reflected beam. Note that due to the lack of translational in-

variance along the interface the tangential wavevector of the incident photon (and hence

the Minkowski photon momentum [166]) is not conserved; the interface contributes an

additional “phase matching” term equal to the phase gradient.

Without loss of generality, we choose a coordinate system such that ~ki lies in the yz-plane

(the plane of incidence), i.e., kx,i = 0 (Fig. 3.17(b)). Equation (3.17) shows that an

interfacial phase gradient with a component oriented along the x-direction leads to an

x-component for both ~kr and ~kt. It is therefore no longer possible to define a single plane

that contains the incident, reflected and transmitted beams. The usual planar k-space

representation used to illustrate refraction and reflection needs to be extended into three

dimensions (as depicted in Fig. 3.17(b)). The angle of reflection (refraction) is now given
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by the wavevector that satisfies the tangential wavevector relation (Fig. 3.17(c)) and

intersects the k-sphere in the medium 1 (2) of radius k = niko (k = ntko). A schematic

of this new physical situation is presented in Fig. 3.17(b). This 3D geometrical k-space

representation is widely used to describe electron, neutron and X-ray diffraction and is

known in the literature [167].

Figure 3.17: Schematics used to describe the generalized refraction at an interface
with arbitrary orientation of the phase gradient and the associated k-space representa-
tion. (a) The interface between two media of refractive index ni and nt is structured

to introduce a constant phase gradient d~Φ/dr ≡ ~kgrad along the line connecting points
A and B that are separated by a distance ∆r. Two points, Pi and Pt are located
respectively in medium 1 and 2. The difference of the phase accumulated along two
paths from Pi to Pt that are infinitesimally close to the actual optical path is zero
according to Fermat’s principle of stationary phase. (b) and (c) The projection of the

incident wave-vector on the interface ~k||,i forms a non-zero angle with the direction
of the phase gradient. As a result during the interaction with the metasurface, the
light beam acquires a k-vector component parallel to the interface equal to the phase
gradient (~k||,rt = ~k||,i + ~kgrad) that gives rise to the out of plane anomalously reflected

and refracted beams.

The directions of the reflected and refracted wavevectors are characterized by the angles

θr(t) (the angle between ~kr(t) and its projection on the xz-plane) and ϕr(t) (the angle

formed by the projection of ~kr(t) on the xz-plane and the z-axis) as defined in Fig.

3.17(b). With this choice of notation, we obtain the generalized law of reflection in 3D
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
cos θr sinϕr = 1

niko
dΦ
dx

sin θr − sin θi = 1
niko

dΦ
dy

(3.19)

and the generalized law of refraction in 3D


cos θt sinϕt = 1

ntko
dΦ
dx

nt sin θt − ni sin θi = 1
ko
dΦ
dy

(3.20)

Notice that when the phase gradient is oriented along the plane of incidence (dΦ/dx = 0)

the anomalous reflection and refraction are in plane and one recovers Eqs. (3.12) and

(3.14). The nonlinear nature of these equations is such that two different critical angles

now exist for both reflection and refraction. When a ray of light traverses an interface,

it will propagate in the new medium as long as its longitudinal wavevector kz remains

real. This implies that the tangential components of the k-vector have to be smaller

than the modulus of the k-vector in the medium. When a phase gradient along the

interface provides an additional tangential component of the k-vector, the condition for

the existence of a transmitted or reflected propagating beam is changed. From Eq.

(3.19), we can find the condition for kz,t to be zero, leading to the expression for two

critical angles for refraction:

θc,ti = sin−1

± 1

ni

√
n2
t −

(
1

ko

dΦ

dx

)2

− 1

niko

dΦ

dy

 (3.21)

Note that a critical angle for refraction may exist even when ni <nt for some interfacial

phase gradients. For reflection, the nonlinear relation between θr and θi yields two

critical angles for reflection:
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θc,ri = sin−1

±
√

1−
(

1

niko

dΦ

dx

)2

− 1

niko

dΦ

dy

 (3.22)

We experimentally observed out-of-plane refraction in accordance with the new 3D law

(Eq. (3.19)) using the same sample patterned with phased optical antenna arrays that

was used in Fig. 3.14, but oriented in such a way that the interfacial phase gradient

forms an angle α with respect to the plane of incidence (Fig. 3.18).

Figure 3.18: Schematic representation of the reflection and refraction of light in
3D. The incident light from a collimated quantum cascade laser emitting at λo = 8
µm impinges at an angle θi with respect to the z-axis on an interface between silicon
and air. The incidence is from silicon and the polarization of the incident light is
maintained so that it forms an angle of 45◦ with respect to the two plasmonic modes of
the antennas. The sample is the same as that used in Fig. 3.14(b). When the interfacial

phase gradient ~kgrad imposed by the V-antenna arrays is not parallel to the y-axis, a
component of the phase gradient out of the plane of incidence is created, resulting in
out-of-plane anomalous beams satisfying the 3D laws of reflection and refraction (Eqs.

3.18 and 3.19).

We studied both the ordinary and anomalous refraction for various incidence angles

and various phase gradient orientations. The magnitude of the phase gradient is fixed

to dΦ/dr = 2π/15 (radian/µm) for all the experiments. The experimental results are

summarized in Fig. 3.19(b) and unambiguously show out-of-plane refraction that agrees

well with the prediction of Eq. (3.19) Figure 3.19(a) shows measured far-field intensity

distribution for a phase gradient perpendicular to the plane of incidence.
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Figure 3.19: Experimental observation of out-of-plane refraction. (a) Measured far-
field intensity as a function of the angular position of the detector θ and φ for a laser
beam incident on the interface from the silicon side at an angle θI = −8.45◦ and for
a phase gradient perpendicular to the plane of incidence. As expected, the ordinary
refracted beam is in plane (φ = 0◦) at an angle following the conventional Snell’s law,
i.e. θ = −30◦. The anomalous beam is refracted out of plane at angles φ = −38◦

and θ = −30◦. The inset shows the angular distribution of the intensity at a fixed
angle φ = −38◦ (green curve) and at a fixed angle θ = −30◦ (red curve). (b) Angles of
refraction versus angles of incidence and orientations of phase gradient α. The black line
is the theoretical curve from the conventional Snell law. Colored lines are theoretical
curves from the 3D Snell’s law (Eq. (3.19)) for different phase gradient orientations.

Circles are experimental data.

In summary, three-dimensional laws of reflection and refraction are derived for opti-

cally thin metasurfaces that impart an abrupt phase gradient oriented at some angle

with respect to the plane of incidence to the incident wavefront. Due to the tangential

wavevector provided by the anisotropic interface, the incident beam and the anomalously

reflected and refracted beams are in general non-coplanar and two different critical an-

gles exist for both reflection and refraction. The beams’ direction can be controlled over

a wide range by varying the angle between the plane of incidence and the phase gradient.

Experiments on arrays of sub-wavelength optical antennas demonstrate out-of-plane re-

fraction in excellent agreement with the 3D Snell law, illustrating the unique beaming

capabilities of metasurfaces at optical frequencies.
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3.6 Giant and tunable optical birefringence

We have shown that the optical properties of V-antennas, and in general any 2D plas-

monic structures that support two charge-oscillation eigenmodes, can be captured by

a simple model involving two independent, orthogonally-oriented harmonic oscillators.

We show in this section that metasurfaces consisting of V- and Y-shaped plasmonic

antennas exhibit widely-tailorable birefringence, where the optical anisotropy can be

controlled by interference between the light scattered by the two plasmonic eigenmodes

of the antennas.

We studied the birefringence properties of the metasurfaces shown in Fig. 3.14(b) by

changing the incident polarization at normal incidence so that the two orthogonal plas-

monic modes are excited with different amplitudes, leading to a rotation of the polariza-

tion of the scattered light. Assume that the angle between the incident polarization and

the x-axis is α and the symmetry axes of the 8 antenna elements are 45◦ away from the

vertical direction (Fig. 3.20(a)). We decompose the incident electric-field into compo-

nents that drive the symmetric and antisymmetric modes, respectively (i.e., parallel and

perpendicular to the antenna symmetry axis), and calculate the scattered light based on

the amplitude and phase responses of the two modes. Theoretical analysis shows that

the scattered light contains two contributions that are polarized along the α-direction

and (90◦−α)-direction, respectively (Fig. 3.20(b)). The (90◦−α)-polarized components

of all 8 antennas have the same amplitude and incremental phase of π/4, which give rise

to an anomalously refracted beam. The α-polarized components, however, do not have

the same amplitude and the proper phase relation between neighboring antennas, which

lead to a beam that propagates in the same direction as the ordinary refraction, as well

as a small optical background over a large angular range. These birefringence properties
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of the metasurface are experimentally confirmed at λo = 8 µm, and Figs. 3.20(c)-(g)

show measured intensity of the ordinarily and the anomalously refracted beams as a

function of the rotation angle of a linear polarizer located in front of the detector for

different incident polarizations. The “eight” patterns in the figures indicate that both

beams are linearly polarized, and that the polarizations of the ordinary and anomalous

refraction are symmetric with respect to the 45◦ direction.

Figure 3.20: (a) Schematics of the 8-antenna unit cell and the incident polarization.
The antenna symmetry axes, ŝ, are 45◦ from the vertical direction. (b) For incident
polarization along the α-direction, the scattered fields from the antennas contain two
components, directed along the gray and black arrows, respectively. Only the latter has
the properly-engineered phase response, i.e., π/4 phase difference between neighbors,
which leads to anomalously refracted beams polarized along the (90◦ − α )-direction.
(c)-(g) Measured intensity of the ordinarily- and anomalously-refracted beams (triangles
and dots, respectively) as a function of the rotation angle of a linear polarizer located
in front of a detector (α = 0, 30, 45, 60, and 90◦ from (c) to (g)). The free-space

wavelength is 8 µm.

The spectral position of the two plasmonic modes of V-antennas can be tuned by varying

the arm length h and, to a smaller extent, by adjusting the opening angle ∆ (Fig.

3.13). However, both of these simultaneously shift the resonance frequencies of the

symmetric and antisymmetric modes of the antenna. By appending a “tail” to the
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V-antenna as shown in Fig. 3.21(a), an additional degree of freedom is attained that

allows for independent tuning of the spectral position of the symmetric mode [115]. By

increasing the tail length, hT , the symmetric mode is red-shifted without affecting the

antisymmetric mode. This is confirmed by mapping out the two plasmonic modes for 4

different values of hT , by measuring the reflectivity spectra from arrays of these antennas

(Figs. 3.21(b) and (c)) and by FDTD simulations (Figs. 3.21(f) and (g)).

The measured polarization conversion efficiency of the Y-antennas is plotted in Fig.

3.21(d), given incident polarization along 45◦ with respect to the antenna symmetry axis,

such that the projections of the incident field along the two antenna modes are equal.

There is a substantial amount of polarization conversion for hT = 100, 300, and 700nm

(red, black, and blue curves, respectively). However, for hT = 500nm (green curve),

the polarization conversion is almost completely extinguished. FDTD simulations (Fig.

3.21(h)) demonstrate the same behavior as in the measurements. The origin of this effect

can be interpreted as destructive interference between the contributions to the cross-

polarization generation from the two oscillator modes. As illustrated in Fig. 3.21(e),

the incident field excites both modes of the Y-antenna, each of which contribute to the

cross-polarized field. However, as shown in Fig. 3.4(b), the projections of the emission

of the two modes onto the v-axis are opposite in phase, so when the two modes are

nearly identical in amplitude and phase responses (as is the case for hT = 500nm), their

contributions to the polarization conversion are π out of phase, resulting in destructive

interference.

To further illustrate this effect, we use the two-oscillator model developed earlier to

demonstrate how the polarization conversion efficiency evolves with various parameters

for the two oscillator modes. In Figs. 3.22 and 3.23 we plot the intensity and phases of

light scattered into the cross-polarization by a two oscillator element following the same
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Figure 3.21: Y-shaped plasmonic antennas. (a) SEM image of the antenna array.
(b) and (c) Measured normal-incidence reflectivity spectra of the symmetric and an-
tisymmetric antenna modes, respectively, as a function of tail length hT , which varies
from 100 nm to 700 nm by increments of 200 nm. The reflectivity of the bare silicon
substrate is approximately 0.3. The vertical dashed line shows that for hT = 500nm
(green curves), the two modes are overlapping. The arrows in the insets indicate the
polarization of the incident field. (d) Polarization conversion spectrum with incident
polarization along 45◦, with the incident and measured polarizations indicated with
arrows. The polarization conversion is nearly extinguished for one intermediate value
of hT (green). (e) Diagram explaining the extinguishing of polarization conversion due
of destructive interference between contributions of the two antenna modes when hT
is adjusted such that the two modes have the same resonant response. (f-h) FDTD

simulations corresponding to the measurements in (b-d).
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convention and coordinate systems as Fig. 3.4. The blue and pink curves represent

the polarization conversion intensity due to the x- and y-oriented modes, respectively,

while the black curve represents the total polarization conversion intensity from the

two-oscillator element, which includes the interference between the two independent

contributions.

Figure 3.22: Polarization conversion due to the x- or y-oriented mode only (blue and
pink curves, respectively, and due to both (black curve) (a). The two modes are exactly
overlapping, generating no polarization conversion due to destructive interference. (b).
The two modes are similar in linewidth, but have differing resonant frequencies, so some
polarization conversion is seen. (c). The two modes are roughly overlapping in resonant
frequency, but have very different linewidths, leading to some polarization conversion

but a 0 exactly on resonance where destructive interference occurs.

In Fig. 3.22(a), we plot the polarization conversion contributions from two identical

orthogonal oscillators, with resonant wavelengths around 5 µm. Note that the blue and

pink curves are overlapping exactly. The phase response of these two contributions to

the polarization conversion is show in Fig. 3.22(d). There is a π phase difference between

the two curves across all wavelengths; this is a graphical representation of the eiπ term in

Eqn. 3.10 and is due to the fact that the projections of the x- and y- oscillators onto the

v-axis in Fig. 3.4 are exactly out of phase. As a result, the two contributions completely

destructively interfere, and therefore the total polarization conversion efficiency from

the two-oscillator element is identically 0 (black curve in Fig. 3.22(a)).
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Figure 3.23: (a) - (c). Polarization conversion due to the x- or y-oriented mode only
(blue and pink curves, respectively, and due to both (black curve). The strength of
the y-oriented (pink) mode is decreased between panels (a), (b), and (c), increasing the
value of the overall polarization conversion. (d). Relative phase of the contributions to

the cross-polarization of the two modes.

By moving the two resonances apart (e.g. to approximately 4.5 µm and 7 µm, respec-

tively) as in Fig. 3.22(b), the two contributions to the polarization conversion no longer

destructively interfere (see 3.22(e) for the phase), and therefore there is substantial po-

larization conversion intensity (black curve in 3.22(b)). Note that the movement of one

resonance with respect to the other can be achieved in Y-shaped antennas by varying

LT (Fig. 3.21). A similar effect is seen by keeping the two resonances roughly at the

same wavelength, but changing their linewidths significantly, as in Fig. 3.22(c), such

that the contributions are π out of phase at very long and very short wavelengths, and

also exactly on resonance, creating the sharp dip in polarization conversion.

We further explore the relationship between the two modes and the total polarization

conversion efficiency by keeping the two modes at the same resonant wavelength and

with the same linewidth, only changing their relative amplitudes. As can be seen in

Fig. 3.22(a), when the two modes are identical in every way, the polarization conversion

efficiency is 0 at all wavelengths (black curve) due to perfect destructive interference.

By decreasing the amplitude of one of the modes (pink) in Fig. 3.23(a), we obtain some
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polarization conversion signal. This signal increases further and further with decreasing

amplitude of the pink mode (Fig. 3.23(b)) until finally reaching the exact value of the

contribution from the blue mode (Fig. 3.23(c)), since there is no longer any contribution

from the pink mode. The phase response of both oscillators is plotted in Fig. 3.23(d),

and is the same for (a-c). As expected, despite the π phase difference between the two

curves, complete destructive interference only happens when the two amplitudes are

identical (as in Fig. 3.22(a)).

In general, arrays of resonant structures which support two orthogonal plasmonic eigen-

modes can be viewed as metasurfaces with large and tunable birefringence: they can

rotate the polarization of light over a thickness of just tens of nanometers at infrared

wavelengths, and the degree of polarization rotation is controlled by the phase and am-

plitude responses of the two modes. This type of birefringence in anisotropic structures

is referred to as “form birefringence” in literature (see, e.g., [168][169][170][171]), though

in the literature form birefringence usually involves anisotropic dielectric structures with

significant thickness compared to the wavelength of light.

3.7 Vortex beams created by metasurfaces

To demonstrate the versatility of the concept of interfacial phase discontinuities, we fab-

ricated metasurfaces capable of creating vortex beams upon illumination by normally

incident linearly polarized Gaussian beams [113] [116]. Optical vortices are a peculiar

type of beam which has a doughnut-like intensity profile and a helicoidally shaped wave-

front [172][173]. Unlike plane waves or Gaussian beams for which the Poynting vector (or

the energy flow) is parallel to the propagation direction, the Poynting vector of a vortex
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beam follows a spiral trajectory around the beam axis (Fig. 3.24(a)). This circulating

flow of energy gives rise to an orbital angular momentum [173].

Figure 3.24: (a)-(c) Wavefronts of optical vortex beams with topological charge l =
1, 2, and 3; l represents the number of twists of wavefront within a wavelength. (d)
and (e) show common methods for characterizing an optical vortex. One can interfere
the vortex beam with a diverging or converging Gaussian beam, producing a spiral
interference pattern, as demonstrated in (d) by the spiral intersection between the
wavefronts of the two beams. Alternatively, one can interfere the vortex beam with
a plane wave, producing an interference pattern with dislocated fringes, schematically

shown in (e).

The wavefront of optical vortices has an azimuthal phase dependence, exp(ilθ), with

respect to the beam axis. The number of twists, l, of the wavefront within a wavelength

is called the topological charge of the beam and is related to the orbital angular momen-

tum L of individual photons by the relationship L = ~l [173][174], where ~ is Planck’s

constant. Note that the polarization state of an optical vortex is independent of its

topological charge. For example, a vortex beam with l = 1 can be linearly polarized

or circularly polarized. The wavefront of the vortex beam can be revealed by a spiral
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interference pattern produced by interference of the beam with a Gaussian beam (Fig.

3.24(d)). The topological charge can be identified by the number of dislocated interfer-

ence fringes when the vortex beam and a plane-wave-like beam intersect with a small

angle (Fig. 3.24(e)).

Optical vortex beams profile are conventionally generated using spiral phase plates [175],

spatial light modulators [176], or holograms with fork-shaped patterns [177]. This type

of beam can also be directly generated by lasers as an intrinsic transverse mode [178].

Vortex beams are also important for a number of applications, such as stimulated emis-

sion depletion microscopy (STED) [179], optical trapping and manipulation [180][181],

and in optical communication systems, where in some instances the quantized orbital

angular momentum can carry additional information per photon [182][183].

Figure 3.25 shows the experimental setup used to generate and characterize the optical

vortices. It consists of a Mach-Zehnder interferometer where the optical vortices are

generated in one arm and their optical wavefronts are revealed by interference with a

reference Gaussian beam propagating through the other arm. A laser beam from a

distributed feedback QCL emitting monochromatic light at λo = 7.75 µm in continuous

wave mode with power of approximately 10 mW is collimated and separated in two

parts by a beam splitter. One part of the beam is rotated in polarization using a set

of mirrors to serve as the reference beam. The second part is focused on a metasurface

phase mask using a ZnSe lens (20-inch focal length, 1-inch diameter). The phase mask

comprises a silicon-air interface decorated with a 2D array of V-shaped antennas designed

and arranged so that it introduces a spiral shaped phase distribution to the scattered

light cross-polarized with respect to the incident polarization. The inset SEM image

of Fig. 3.25 shows the metasurface designed to generate the l = 1 beam. We chose a

packing density of about 1 antenna per 1.5 µm2 (approximately λ2
o/40), to maximize
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the efficiency of the device while avoiding strong near-field interactions. We estimate

that about 30% of the light power impinging on the metasurfaces is transferred to the

vortex beams in this setup.

Figure 3.25: Experimental setup based on a Mach-Zehnder interferometer used to
generate and characterize optical vortices. The bottom inset SEM image shows a
metasurface phase plate with topological charge one. The plate consists of eight re-
gions, each occupied by one of the eight elements in the unit cell in Fig. 3.14(b). The
antennas are arranged to generate a phase shift that varies azimuthally from 0 to 2π,

thus producing a helicoidal wavefront.

Figure 3.26(a) shows interferograms created by the interference between a plane-wave-

like reference beam and the beam generated by the metasurface while the two intersect

with a small angle. The dislocation at the center of the interferograms confirms the

presence of a phase singularity at the core of the beam generated by the metasurface.

The orientation and the number of the dislocated fringes of the interferograms can be

used to characterize the sign and the topological charge L of the vortex beam.

Figure 3.27 presents FDTD simulations of the evolution of the cross-polarized scattered

field after a Gaussian beam at λo = 7.7 µm impinges normally on a 50 by 50 µm2 meta-

surface phase plate like the one shown in Fig. 3.25. We observe that a phase singularity,

where the phase is undefined, is established at the center of the phase distribution as
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Figure 3.26: (a) Interferograms obtained from the interference between a plane-wave-
like reference beam and optical vortices with different topological charges. The dislo-
cation of the fringe pattern indicates the presence of a phase defect along the axis of
the transmitted beam. Vortex beams with single (double) charge(s) are generated by
introducing an angular distribution ranging from 0 to 2π (4π) using metasurfaces. The
azimuthal direction of the angular phase distribution defines the sign of the topological
charge (also called chirality). (b) Spiral interferograms created by the interference of

vortex beams and a co-propagating Gaussian beam.

close as one micrometer (approximately λo/8) away from the interface. The presence of

such phase singularity produces the characteristic zero of intensity at the beam axis less

than a wavelength away from the interface. The fact that a metasurface molds the inci-

dent wavefront into an arbitrary shaped almost instantaneously presents an advantage

over conventional optical components, such as liquid-crystal spatial light modulators,

which are optically thick, and diffractive optics, which require observers to be in the

far-field zone characterized by Fraunhofer distance 2D2/λo, where D is the size of the

element [16].

We conducted a quantitative analysis of the generated optical vortices in term of the

purity of their topological charge. The amplitude distribution of the optical vortex is

obtained from the measured intensity distribution (Fig. 3.28(a)), and its phase profile
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Figure 3.27: FDTD simulations of the cross-polarized scattered field as a function
of distance from a metasurface phase plate designed to create a single charge optical
vortex. The characteristic zero intensity at the center of the beam and the phase
singularity develop as soon as the evanescent near-field components vanish, i.e., about

1 µm or one eighth of wavelength behind the interface.

(Fig. 3.28(c)) is obtained by the recorded interferogram (Fig. 3.28(b)). The purity of

the optical vortex is calculated by decomposing its complex field on a complete basis

set of optical modes with angular momentum, i.e. the Laguerre-Gaussian (LG) modes

(ELGl,p ) [105]. The weight of a particular LG mode in the vortex beam is given by

CLGl,p =
∫∫

EvortexE
LG
l,p
∗
dxdy, where Evortex is the complex electric field of the vortex

beam, the star denotes complex conjugate, and the integers l and p are the azimuthal and

radial Laguerre-Gaussian mode indices, respectively. The relative charge distribution of

an optical vortex is obtained by summing all the modes with the same azimuthal index

lo, Clo =
∑

pC
LG
p,lo

. A histogram representing the charge distribution for our vortex

beam is plotted in Fig. 3.28(d). The purity of the single charged vortex (l = 1) created

with our technique is above 90%, similar to the purity of vortex beams obtained with

conventional spatial light modulators.
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Figure 3.28: Analysis of the purity of the optical vortices generated by metasurface
phase masks. (a) Measured doughnut-shaped intensity profile of a vortex beam with
l = 1. (b) Measured interferogram of the vortex beam when it interferes with a plane
wave. The phase profile of the vortex beam in (c) is extracted via 2D Fourier and inverse
Fourier transforms of the interferogram in (b), separating the vortex and reference beam
in the Fourier space. (d) Histogram representing the decomposition of the single charge
vortex beam on a basis set of Laguerre-Gaussian modes with topological charge index

lol0.

3.8 Broadband metasurface wave plates

Considerable attention has been drawn to the optical properties of assemblies of anisotropic

metallic and dielectric structures, which can mimic the polarization-altering character-

istics of naturally-occurring birefringent and chiral media. Planar chiral metasurfaces

change the polarization state of transmitted light to a limited degree [184][185][186][187][188][189].

Circular polarizers based on three-dimensional chiral metamaterials primarily pass light

of circular polarization of one handedness while the transmission of light of the other

handedness is suppressed [190][191]. Because of the difficulty of fabricating thick chiral

metamaterials, the demonstrated suppression ratio between circular polarizations of dif-

ferent handedness is usually quite small (<10). One way to overcome this difficulty is to

use planar structures comprising strongly-scattering anisotropic particles that are able to

abruptly change the polarization of light. V-antennas are one example; other examples

include arrays of identical rod or aperture metallic antennas [192][193][194][195][196] or

meander-line structures [197][198]. Light scattered from such particles changes polariza-

tion because they have different spectral responses (in amplitude and phase) along the
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two principle axes [199][200][201], as described in section 3.6.

Wave plates comprising identical plasmonic scatters have a number of issues. First,

their performance is usually degraded by the optical background originating from direct

transmission due to the finite metasurface filling factor and non-perfectly-overlapping

scattering cross-sections (i.e., transmitted light not scattered or absorbed by the plas-

monic structures). Second, their spectral response is limited because of the relatively

narrow plasmonic resonance. For example, once a plasmonic quarter-wave plate operates

away from the optimal wavelength, the ratio of scattering amplitude R between the two

eigenmodes deviates from unity and their differential phase Ψ is no longer π/2, as it has

to be to function as a quarter wave plate (Fig. 3.29(a)).

Figure 3.29: (a) Conventional plasmonic quarter-wave plates are based on arrays
of identical anisotropic plasmonic structures that support two orthogonal plasmonic
eigenmodes, V and H, which have an amplitude and phase response characteristic of
any resonance (red and blue curves). The devices operate as quarter-wave plates only
within a narrow wavelength range (gray area) in which the two eigenmodes have ap-
proximately equal scattering amplitudes and a phase difference of Ψ = π/2. The design
also suffers from the presence of a background, which occurs because the scattered
light from plasmonic structures is not spatially separated from the directly transmitted
light. (b) To circumvent the problems of optical background and narrow bandwidth,
we use a different design based on optical antenna metasurfaces. The unit cell of the
metasurface consists of two sub-units (purple and green) each containing eight gold
V-shaped antennas. Upon excitation by linearly polarized incident light, the sub-units
generate two co-propagating subwaves with equal amplitudes, orthogonal linear polar-
ization states, and a π/2 phase difference (when offset d = Γ/4), producing a circularly
polarized extraordinary beam that bends away from the surface normal. The ampli-
tudes of the subwaves are equal because corresponding antennas in the sub-units have
the same geometries (i.e., arm length and opening angle); the orthogonal polarizations
are ensured by different antenna orientations in the sub-units; the π/2 phase difference
is introduced by the offset, d, between the sub-units. The metasurface also generates
an ordinary beam propagating normal to the surface and polarized in the same way as

the incident light.

126



Chapter 3. Controlling light propagation with optical antenna metasurfaces

In this section we describe metasurfaces based on phased optical antenna arrays that

can generate scattered light waves with arbitrary polarization states. In particular,

we demonstrated a quarter-wave plate that features ultra-broadband and background

free performance, and works for any orientation of the incident linear polarization. The

present design builds upon the work in the previous sections, in which it is demonstrated

that phased optical antenna arrays can design arbitrary linearly-polarized wavefronts.

The schematic of our metasurface quarter-wave plate is shown in Fig. 3.29(b). The unit

cell consists of two sub-units (purple and green in Fig. 3.29(b)), which generate two co-

propagating subwaves with equal amplitude, orthogonal polarization, and a π/2 phase

difference from an incident beam with linear polarization. The subwaves coherently

interfere, producing a circularly polarized extraordinary beam that bends away from the

propagation direction of the background, that is, the ordinary beam (Fig. 3.29(b)). Due

to the spatial separation of the two beams, the extraordinary beam is background free.

Our quarter-wave plate performs well over a much larger wavelength range compared

to existing designs for two reasons. First, the optical response of the V-antennas has

a broader effective resonance over which the antenna scattering efficiency is significant

and the phase response is approximately linear (Figs. 3.30(a) and (b)). This broadened

effective resonance is a result of the combined responses of the two eigenmodes of the

V-antennas. Second, our metasurfaces are robust against wavelength change because

we use a “balanced” design featuring two sub-units in one unit cell. Away from the

optimal operating wavelength, the phase and amplitude responses of the antenna arrays

will deviate from their designed values (Figs. 3.30(c) and (d)); nevertheless, the two

subwaves have the same wavefronts (Figs. 3.30(c) and (d)) so they always contribute

equally to the extraordinary beam, resulting in a pure circular polarization state.
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Figure 3.30: (a) and (b) Amplitude and phase responses of S, A, and S – A for a
representative V-antenna obtained by full-wave simulations; here S and A represent
the complex scattering amplitudes of the symmetric and antisymmetric eigenmodes,
respectively. The arm length of the V-antenna is 1.2 µm and the angle between the
two arms is 90o. This is the second antenna from the left in a given sub-unit (Fig.
3.31(a)). The current flow of the two eigenmodes of the antenna is shown in the insets.
The arrows refer to the direction of current flow and the brightness represents the
magnitude of the current density, with darker colors representing larger currents. The
scattered light from the antenna can be decomposed into two components (S + A) and
(S – A). By properly designing the phase and amplitude responses of these components
in the antenna arrays, we can spatially separate them so that (S + A) and (S – A)
lead to, respectively, the ordinary and extraordinary beams propagating in different
directions. Because of the much broader effective plasmonic resonance as a result of the
combined responses (i.e., S – A as compared to S or A), our metasurface quarter-wave
plates can provide significant scattering efficiency over a broader wavelength range, as
is shown in (a). The combined plasmonic resonances can also provide a larger coverage
in the phase response (i.e., approximately 1.5π for S – A as compared to approximately
0.75π for S or A), as is shown in (b). (c) and (d) Calculated phase and amplitude
responses along the antenna array. Responses for two consecutive sub-units are shown
(i.e., antennas #9-16 are identical to antennas #1-8). Pink and green curves are for
the first and second sub-unit, respectively; solid and dashed curves are for excitation
wavelengths of 8 µm and 5 µm, respectively. As designed, the phase response at λ = 8
µm exhibits an almost constant gradient (i.e., 2π over 8 antennas in the sub-unit); the
amplitude response at this wavelength is quite uniform. These properties correspond to
an extraordinary beam with a flat wavefront and high intensity. However, at λ = 5 µm
the phase does not follow a perfect linear profile and the amplitude response shows large
variations. Even at this non-ideal situation, however, we still obtain an extraordinary
beam with close-to-unity degree of circular polarization (but with reduced intensity)
because the subwaves always have equal contributions to the beam since they have

exactly the same wavefronts (compare the dashed curves in (c) or (d)).
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The basic elements in our metasurface design are gold V-shaped antennas, each sup-

porting symmetric and antisymmetric eigenmodes as previously discussed. For arbitrary

incident polarization, both modes are excited and contribute to the antenna scattering

response. The scattered waves from the eight antennas in a sub-unit can be written as:



~E1

~E2

~E3

~E4

~E5

~E6

~E7

~E8



=
1

2



S1 −A1

S2 −A2

S3 −A3

S4 −A4

− (S1 −A1)

− (S2 −A2)

− (S3 −A3)

− (S4 −A4)


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(cosαŷ + sinαx̂)

(3.23)

Here α and β are the orientation angles of the incident field and the antenna sym-

metry axis, respectively; x̂ and ŷ are the unit vectors along the x and y axes, re-

spectively (Fig. 3.31(a) and (b)); Siand Ai are the complex scattering amplitudes of

the symmetric and antisymmetric mode of the ith antenna in the sub-unit, respec-

tively. Equation (3.23) shows that the scattered light from the antennas ( ~Ei, with

i =1-8) contains two terms, which are polarized along the (2β − α)-direction and the

α-direction from the y-axis, respectively. The antenna array is designed so that at λ =

8µm the (2β − α)-polarized components of all the antennas have the same amplitude

and an incremental phase of ∆Φ = π/4. That is,
∣∣Si −Ai

∣∣ is constant, with i =1-4, and

∠
(
Si+1 −Ai+1

)
− ∠

(
Si −Ai

)
= π/4, with i =1-3. Therefore the (2β − α)-polarized

partial waves scattered from the antenna array produce a wave propagating along the
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θt = arcsin(λ/Γ) direction from the surface normal. On the other hand, the α-polarized

components, which have the same polarization as the incident light, have unequal am-

plitudes but similar phase responses. Therefore, the α-polarized partial waves combine

to form a wave that propagates in a direction normal to the metasurface and contributes

to the ordinary beam.

Figure 3.31: (a) SEM image of a metasurface quarter-wave plate. The unit cell of
the metasurface comprises two sub-units (pink and green). Each sub-unit contains
eight V-antennas, with the last four antennas obtained by rotating the first four clock-
wise by 90o. Antenna orientation angles are indicated by β1 and β2, and dashed lines
represent the antenna symmetry axes. Scale bar is 4 µm. (b) Schematic showing the
polarization of the two subwaves E1 and E2 scattered from the two sub-units, as well
as that of the incident light. (c) Experimental far-field scans showing extraordinary
beams at θt >0 generated by metasurfaces with different interfacial phase gradients
(from 2π/13µ m to 2π/17µ m) at different wavelengths (from 5.2µ m to 9.9µ m),
as well as the ordinary beams located at θt = 0, given normally incident excitation.
This broadband response is independent of the incident polarization. The scans are
normalized with respect to the intensity of the ordinary beams. At a wavelength of
7.7 µm, the intensity of the extraordinary beams is 30-40% of that of the ordinary
beams, corresponding to approximately 10% of the total incident power. The arrows
indicate the calculated angular positions of the extraordinary beams according to θt =
arcsin(λ/Γ). (d) Calculated phase difference Ψ and ratio of amplitudes R between the
two subwaves as a function of wavelength. (e) Calculated degree of circular polarization
and intensity of the extraordinary beam as a function of wavelength. (f) State-of-
polarization analyses for the extraordinary beam at λ = 5.2, 8, and 9.9 µm. The
measurements are performed by rotating a linear polarizer in front of a detector and

measuring the transmitted power.

The metasurface quarter-wave plate has a unit cell consisting of two sub-units that are

offset from each other in the horizontal direction by d (Fig. 3.31(a)). They create two
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coherent subwaves that propagate along the θt =arcSin(λ/Γ) direction (Fig. 3.29(b)),

The subwaves spatially overlap since the spacing between the two sub-units in the ver-

tical direction is much smaller than the free-space wavelength (Fig. 3.31(a)), and have

equal amplitude because the corresponding antennas in the two sub-units have the same

geometries (i.e., arm length and opening angle). The orthogonal polarization between

the subwaves is achieved by choosing antenna orientations β1 = 67.5o and β2 = 112.5o

so that (2β2 - α) - (2β1 − α) = 90o (Fig. 3.31(b)). The 90o phase difference between

the subwaves is introduced by choosing the offset d = Γ/4, so that Ψ = kodSin(θt) =

2πd/Γ = 90o. As a result of these properties, the two subwaves coherently interfere,

producing a circularly polarized extraordinary beam (Fig. 3.29(b)). Note that once

β2 - β1 = 45o, the two subwaves will always have perpendicular polarization, which is

independent of the orientation angle α of the linearly polarized incident light.

Our optical antenna arrays can provide phase coverage from 0o to 360o with an incre-

ment of approximately 45o over a wide range of wavelengths (Fig. 3.16(b)). Therefore,

the metasurface quarter-wave plates can generate well-defined extraordinary beams over

a broad spectral range. Figure 3.31(c) shows experimental far-field scans at excitation

wavelengths from 5.2 to 9.9 µm. Samples with Γ = 13, 15, and 17 µm have been tested.

For all samples and excitation wavelengths, we observe the ordinary and extraordinary

beams and negligible optical background. The observed angular positions of the extraor-

dinary beams agree very well with the generalized law of refraction in the presence of the

interfacial phase gradient, θt = arcSin(λ/Γ) (Fig. 3.31(c)). At 8 µm, close to the optimal

operation wavelength, our metasurfaces scatter approximately 10% of the incident light

into the extraordinary beam and the efficiency can in principle be increased by using

denser antenna arrays or by exploiting antenna designs with higher scattering amplitude

(e.g., antennas with a metallic back plane operating in reflection mode). Figure 3.31(d)
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shows the phase difference Ψ and amplitude ratio R between the two subwaves scattered

from the sub-units, calculated via FDTD simulations. It is observed that Ψ and R are

in the close vicinity of 90o and 1, respectively, over the λ =5 to 12 µm wavelength

range; correspondingly, a high degree of circular polarization (DOCP) close to unity

can be maintained over the wavelength range (Fig. 3.31(e)). Here DOCP is defined as

|IRCP-ILCP|/|IRCP+ILCP|, where IRCP and IRCP stand for the intensities of the right and

left circularly polarized components in the extraordinary beam, respectively. This result

confirms our experimental findings that the circularly polarized beam has high purity

(Fig. 3.31(f)). We have verified that the circular polarization of the extraordinary beam

is independent of the orientation of the incident linear polarization. The extraordinary

beam reaches its peak intensity at λ ≈ 7 µm (Fig. 3.31(e)). The intensity decreases

towards longer and shorter wavelengths because the S - A components of the scattered

light from the antenna arrays start to have mismatched amplitudes and a nonlinear

phase distribution.

We define the bandwidth of a quarter-wave plate ∆λqw as the wavelength range over

which DOCP is sufficiently close to 1 (e.g., >0.95) and an output with high intensity

can be maintained (e.g., intensity larger than half of the peak value). According to this

definition, the bandwidth of our metasurface quarter-wave plates is about 4 µm (i.e.,

from λ ≈ 6 to 10µm; see Fig. 3.31(e)), which is about 50% of the central operating

wavelength λcentral. For comparison, the bandwidth of quarter-wave plates based on

anisotropic rod or aperture antennas is typically ∆λqw ≈ 0.05-0.1λcentral [128][194][196].

The polarizations of the subwaves are controlled by angles α, β1, and β2 and their

amplitudes are controlled by the scattering amplitudes, S and A, of the antenna eigen-

modes (Eq. (3.23)). This decoupling between polarization and amplitude allows us to

synthesize beams with arbitrary polarization states. In addition to circularly polarized
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Figure 3.32: The offset between the sub-units, d, controls the phase difference between
the two scattered subwaves and therefore the polarization of the extraordinary beam.
The phase difference is Ψ = kodSin(θt) = 2πd/Γ. Therefore, d = 0 or Γ/2 will lead to
linear polarization, shown in (a);d = Γ/4 will lead to circular polarization, shown in Fig.
3.31; other choices will lead to elliptical polarization states; these shown in (b) are for
Ψ = π/4 and 3π/4. The left panels are SEM images of the unit cells and the right panels
are the results of the state-of-polarization analyses. The symbols are measurements,
and the curves are analytical calculations assuming that the two subwaves have equal

amplitude and a phase difference equal to the value of Ψ indicated in the figures.

beams (Fig. 3.31), we were able to generate linearly polarized and elliptically polarized

extraordinary beams by simply changing the sub-unit offset d (Fig. 3.32).

Wave plates are some of the most ubiquitous components in optics. Most commonly-used

designs are based on bulk birefringent crystals with optical anisotropy. This conventional

approach has several limitations: it is relatively narrow band and it relies on the avail-

ability of birefringent materials in the desired frequency range. Approaches exist to

overcome the latter limitation, which utilize form birefringence of anisotropic structures

such as plasmonic antennas. These come with their own limitations; in particular, they

exhibit relatively low purity of polarization and often superimpose an optical background

onto the desired signal. In addition, the bandwidth of these devices is also relatively

small. Our approach, which involves spatially inhomogeneous arrays of anisotropic op-

tical antennas, overcomes many of these limitations. We experimentally demonstrated
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quarter- and half-wave plates, which are broadband and have high polarization purity

(e.g., output of quarter-wave plate with DOCP larger than 0.97 over λ = 5 to 12 µm, and

with intensity larger than half-maximum over λ = 6 to 10 µm). This approach requires

only a single step of conventional lithography and is generalizable from the visible to

the radio-frequency regimes.

3.9 Flat lenses and axicons

The fabrication of refractive lenses with aberration correction is difficult and low-weight

small-volume lenses based on diffraction are highly desirable. At optical frequencies,

planar focusing devices have been demonstrated using arrays of nanoholes [202], op-

tical masks [203][204][120], nanoslits [205], and loop antennas [206]. In addition flat

metamaterial-based lenses such as hyperlenses and superlenses have been used to demon-

strate optical imaging with resolution finer than the diffraction limit [162][207][208][209].

We designed and demonstrated planar lenses and axicons based on metasurfaces at tele-

com wavelength of λ = 1.55 µm. Planar lenses can mold incident planar wavefronts

into spherical ones and therefore achieve focusing without monochromatic aberrations;

axicons are conical shaped lenses that can convert Gaussian beams into non-diffracting

Bessel beams and can create hollow beams [107][210].

The design of flat lenses is obtained by imposing a hyperboloidal phase profile on the

metasurface. In this way, secondary waves emerging from the latter constructively in-

terfere at the focal point similar to the waves that emerge from conventional lenses [1].

For a given focal length f , the phase shift φL imposed on every point PL(x,y) on the
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flat lens (Fig. 3.33(a)) must satisfy

ϕL(x, y) =
2π

λ
PLSL =

2π

λ

(√
x2 + y2 + f2 − f

)
(3.24)

For an axicon with angle ξ, the phase delay has to increase linearly with the distance

from the center. The phase shift φA at every point PA(x,y) has to satisfy

ϕA(x, y) =
2π

λ
PASA =

2π

λ

√
x2 + y2 sin ξ (3.25)

Figure 3.33: Schematics showing the design of flat lenses and axicons. To focus a
plane wave to a single point at distance f from the metasurface, a hyperboloidal phase
profile must be imparted onto the incident wavefront. (a) The phase shift at a point
PL on the flat lens is designed to be proportional to the distance between PL and its
corresponding point SL on the spherical surface of radius f and is given by Eq. (3.24).
(b) The axicon images a point source onto a line segment along the optical axis; the
length of the segment is the depth of focus (DOF). The phase (Eq. (3.25)) in point
PA on the flat axicon is proportional to the distance between PA and its corresponding
point SA on the surface of a cone with base angle ξ =arctan(r/DOF), where r is the

radius of the flat axicon.

The design of these lenses and axicons can be made to be free from monochromatic

aberrations typically present in conventional refractive optics. A spherical lens focuses

light to a single point only in the limit of paraxial approximation; a deviation from this
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condition introduces monochromatic aberrations such as spherical aberrations, coma,

and astigmatism [1]. To circumvent this problem, aspheric lenses or multi-lens designs

are implemented [1]. In our case, the hyperboloidal phase distribution imposed at the

metasurfaces produces a wavefront that remains spherical under non-paraxial conditions,

which can enable high numerical-aperture (NA) focusing without aberrations.

To demonstrate this new flat lens we designed eight different plasmonic V-antennas that

scatter light in cross-polarization with relatively constant amplitudes and incremental

phases of π/4 in the near-infrared (Fig. 13.34(a)). These antennas are used to form

arrays according to the phase distributions specified in Eqs. (3.24) and (3.25) to create

two flat lenses (r=0.45 mm, f =3 cm, corresponding to NA=0.015; r=0.45 mm, f =6 cm,

corresponding to NA=0.075), and an axicon (r=0.45 mm, ξ =0.5o). These flat optical

components are fabricated by patterning double-side-polished undoped silicon wafers

with gold nano-antennas using electron beam lithography. A schematic experimental

setup is shown in Fig. 3.34(b).

The measured far-field for the metasurface lens with 3 cm focal distance and the cor-

responding analytical calculations are presented in Figs. 3.35(a)-(c). The results for

the metasurface axicon and for an ideal axicon are presented in Figs. 3.35(d)-(f). We

found good agreement between experiments and calculations. In the calculations, the

metasurfaces are modeled as an ensemble of dipolar emitters with identical scattering

amplitudes and phase distributions given by Eqs. 3.24 and 3.25. Note that the actual

non-diffracting distance of the metasurface axicon is slightly shorter than the ideal DOF

because the device is illuminated with a collimated Gaussian beam instead of a plane

wave [211]. The efficiency in focusing light of the flat lens in Fig. 3.34(c) is about

1% because of the relatively large antenna spacing of 750 nm, which is limited by the
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Figure 3.34: (a) FDTD simulations of the phase shifts and scattering amplitudes in
cross-polarization for the eight V-antennas designed to operate at λ =1.55µm. The
parameters characterizing the elements from 1 to 4 are: h = 180 nm, 140 nm, 130
nm, 85 nm and ∆ = 79°, 68°, 104°, 175°. Elements #5 - #8 are obtained by rotating
#1-#4 by an angle of 90°counter-clockwise. The antenna width is fixed at 50 nm. (b)
Experimental setup: a diode laser beam at λ =1.55 µm is incident onto the sample
with y-polarization. The light scattered by the metasurface in x-polarization is isolated
with a polarizer. A detector mounted on a 3-axis motorized translational stage detects
the light passing through a pinhole, attached to the detector, with an aperture of 50
µm. The lenses and axicon also work for x-polarized illumination because of symmetry
in our design: the antennas have their symmetry axis along the 45o-direction; therefore
x-polarized illumination will lead to y-polarized focused light. In general, our flat
optical components can focus light with any arbitrary polarization because the latter
can always be decomposed into two independent components polarized in the x- and
y-directions. (c) Left panel: SEM image of the fabricated lens with 3 cm focal length.
Right panel: Phase profile calculated from Eq. 14 and discretized according to the
phase responses of the eight antennas. Insets: zoom-ins of fabricated antennas. The

antenna array has a square lattice with a lattice constant of 750 nm.
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fabrication time of EBL; it can be improved to about 10% by using a higher antenna

packing density with an antenna spacing of 220 nm according to our calculations.

Figure 3.35: (a)-(c) Calculations and experimental results of the intensity distribution
in the focal region for the flat lens with f =3 cm. (a) is calculated using the dipolar
model. (b) and (c) are the experimental results showing the xz- and yz-cross sections
of the 3D intensity distribution, respectively. (d)-(f) Calculations and experimental

results of the intensity distribution for the planar axicon with ξ =0.5o.

The ability to design phase shifts on a flat surface over a 0-to-2π range with a subwave-

length spatial resolution is significant. For example, it is possible to produce large phase

gradients, which are necessary to create high NA planar lenses. FDTD simulations of a

high-NA cylindrical lens are shown in Fig. 3.36. Although the present design is diffrac-

tion limited, focusing below the diffraction limit in the far field is possible using plates

patterned with structures that provide subwavelength spatial resolution of phase and
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amplitude [204]. Planar lenses and axicons can be designed for other range of frequen-

cies and may become particularly interesting in the mid-infrared and terahertz regimes

where the choice of suitable refractive materials is limited compared to the near-infrared

and the visible.

Figure 3.36: (a) Schematic unit cell of a high numerical aperture (NA=0.77) cylin-
drical lens. The dimensions of the unit cell are 0.9 mm by 300 nm and its phase
distribution in the lateral direction is determined by Eqn. 3.24. In the y-direction,
periodic boundary conditions are used in simulations. (b) Line scan of intensity at the

focal plane for the lens with f = 371 µm. The beam waist is 1 µm.

3.10 Dynamically tunable optical antennas

As we showed in the previous sections, the near- and far-field response of optical an-

tennas can be tailored by engineering the geometrical parameters. However, dynamic

control of these optical properties is particularly appealing. The integration of metasur-

faces comprising optical phase discontinuities with active materials such as graphene,

vanadium oxide, and tungsten oxide will enable large-scale dynamically tunable phased

antenna arrays at visible, infrared and terahertz which will augment or replace existing

spatial light modulators and displays which use liquid crystal technology.

In this section, we briefly discuss two tuning mechanisms based on VO2 and graphene.

Compared to liquid crystals, our active materials will enable designs that are much faster,
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more lightweight, and potentially easier to implement. Graphene and VO2 both show

potential switching performance on picosecond time scales, orders of magnitude faster

that than the fastest liquid crystal devices; this switching speed is of critical importance

to applications such as beam steering, all-optical switching and processing, and adaptive

optical devices.

3.10.1 Insulator-metal transition in vanadium oxide as a tuning mech-

anism

In this section we demonstrate that resonances of mid-IR plasmonic antennas can be

tuned and switched on/off by thermal control of phase co-existence in a vanadium dioxide

(VO2) substrate. A similar approach has been previously explored for the tuning of

the effective refractive index of metamaterials in the terahertz (THz) [51][212][213] and

near-IR [58], tuning nanoparticle scattering spectra in the visible [214][215][216], and

control of transmission through apertures in the THz [59]. We utilized a normalization

procedure that helps isolate the antenna resonances from the optical response of the un-

patterned underlying substrate in proximity to the VO2 phase transition. To validate our

results, we incorporated the literature complex refractive indices of VO2 throughout its

phase transition into full-wave numerical simulations and observed qualitative agreement

between the simulated and experimental reflectivity spectra.

In general, a plasmonic antenna can be made tunable by incorporating a material such

as VO2 into its design; here, we focus on Y-shaped antennas such as the ones shown in

section 3.6. We fabricated a square array of gold (Au) Y-shaped antennas with a period

of 3 µm on a thick, single-side-polished c-plane sapphire substrate coated with approx-

imately 180 nm of single-crystalline VO2. The antenna spacing is large to minimize
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near-field coupling between neighboring antennas. The VO2 film was deposited using

magnetron sputtering from a V2O5 target at 550◦ C under 10 mTorr pressure with 100

sccm Ar gas flow at a power of 120 W to obtain phase pure VO2. The antennas were

defined using electron-beam lithography and deposition of 5 nm of Ti and 40 nm of Au,

and lift-off. A scanning electron microscope (SEM) image of the structures is shown in

Fig. 3.37(a); the vertical and horizontal arms are approximately 1.05 µm long and the

diagonal arm is approximately 0.75 µm long, all with a width of approximately 160 nm.

The roughness of the VO2 film is visible in the SEM image, and was transferred to the

metallic antennas.

Figure 3.37: (a) Scanning electron microscope image of the fabricated sample com-
prising an array of gold antennas on a approximately 180 nm VO2 film deposited on
a sapphire wafer. Inset: zoomed-in image of a single Y-shaped antenna with arrows
indicating the flow of the current. (b) Schematic of the reflectivity measurement. Light
from an FTIR is incident on the temperature-controlled sample, and the reflection is

sent to a detector.

An antenna array situated on a dielectric substrate can be viewed as a frequency selec-

tive surface, and is expected to have a peak in its reflectivity spectrum when on reso-

nance [217]. We collected temperature-dependent reflectivity spectra by using a Fourier

transform infrared (FTIR) spectrometer (Bruker Vertex 70), connected to a mid-IR mi-

croscope (Bruker Hyperion 2000) equipped with a temperature-controlled stage (Bruker

A599). A schematic of the setup is shown in Fig. 3.37(b). A Cassegrain objective

(15X, NA = 0.4) was used to focus a polarized beam from a Globar source onto the
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sample, with the reflected light collected by the same objective and sent to a cooled

mercury-cadmium-telluride (MCT) detector. Nearly all of the light that is not reflected

is absorbed within the antennas, the VO2 film, and the underlying sapphire as it is not

transparent for λ >5 µ m. At each temperature, the reflectivity spectra were normalized

to (i. e. divided by) the reflectivity of the bare VO2/sapphire substrate at that same

temperature. Such normalization helps isolate the reflectivity feature due to the anten-

nas at each temperature from the nontrivial reflectivity of the underlying VO2 film on

sapphire.

The normalized reflectivity is shown in Fig. 3.38(a), with the incident polarization along

the symmetry axis of the antennas as indicated with the double-sided arrow in Fig.

3.37(a); this ensures that no polarization conversion takes place at the antenna array.

When the VO2 is in the dielectric state (e.g. T = 28 °C), the resonances of the antennas

in the array lead to a peak in reflectivity at around λ = 9.3 µ m. As the temperature

increases to T = 69 °C, this peak is red-shifted to λ = 10.5 µ m, corresponding to a

greater than 10% shift in the resonance frequency. This shift coincides with a decrease

in the peak reflectivity and increase in the linewidth. The wavelength of the reflectivity

peak and its value are plotted in Fig. 3.38(b) as a function of temperature when heating

(solid lines), and then cooling back down (dotted lines). There is hysteresis in this plot

which is inherent to the VO2 phase transition, though the full hysteresis loop is not

visible in Fig. 3.38(b) because we truncated the temperatures at 69 °C for heating,

and 63 °C for cooling, respectively; beyond these temperatures the reflectivity peak

disappears.

The key features of Fig. 3.38(a) are reproduced by FDTD simulations in 3.39(a). Peri-

odic boundary conditions were used to capture the effect of the array. The IR complex

refractive index data for sapphire, Ti, and Au was interpolated from literature data [64],
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Figure 3.38: (a) Reflectivity spectra of the antenna array for increasing temperatures,
showing the evolution of the antenna resonance through the VO2 phase transition.
At each temperature, the spectrum was normalized to reflectivity of the substrate
without the antennas. (b) The wavelength at which the reflectivity peaks (blue) and the
normalized peak reflectivity value (green) as a function of temperature during heating

(solid lines) and cooling (dashed lines).

while the VO2 refractive indices throughout its phase transition were taken from ellip-

sometry measurements in ref. [52]. The differences between the experimental results

of Fig. 3.38(a) and the calculations of Fig. 3.39(a) are primarily due to the differing

growth conditions and thicknesses between our VO2 sample and the one measured in

ref. [52], which lead to a different temperature-dependent complex refractive index, as

well as the surface roughness which is not accounted for in the simulations.

Figure 3.39: (a) Calculated normalized reflectivity spectra corresponding to the ex-
perimental data in Fig. 3.38(a) using FDTD, incorporating literature values for the
complex refractive indices of gold, VO2, and sapphire. (b) Real (n) and imaginary (k)

parts of the refractive index of VO2 at wavelengths of 9.3 µm and 10.5 µm.

This shift in the resonance occurs because the refractive index of the underlying VO2
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changes as a function of temperature. At the onset of the transition, the real part of the

complex refractive index n increases at mid-IR wavelengths (curves for 9.3 µm and 10.5

µm are shown in blue in Fig. 3.39(b)). This increase in the substrate index is strongly

felt by the antenna, which acts as a dispersive Fabry-Perot resonator for surface plasmons

with the effective index of the mode dependent on the index of the substrate [153][218].

In the present demonstration, we are exciting one of the two plasmonic eigenmodes of

the Y-shaped antenna; the other eigenmode feels the index change of the substrate in the

same way. Through the course of the VO2 phase transition the antenna resonance is also

impacted by the increase of losses (the values of the imaginary part k of the complex

refractive index of VO2 are shown in black in Fig. 3.39(b)), which increase as the

fraction of the metallic-phase VO2 increases, resulting in a lower-amplitude reflectivity

maximum. As the VO2 film transitions into its high-temperature metallic state (where

k >n), the antennas become “shorted” and can no longer be viewed as isolated resonant

elements, so the reflectivity maximum disappears (orange curves in Fig. 3.38(a) and

Fig. 3.39(a)). The peak in normalized reflectivity in Fig. 3.38(a) and Fig. 3.39(a)

at 11-12 µm that appears at temperatures close to the critical IMT temperature is a

result of a “division by zero”: at this wavelength and temperature the reflectivity of the

underlying VO2/sapphire substrate is approximately 0 as a result of critical coupling to

an ultra-thin cavity resonance as described in section 2.4, causing a divergence in the

normalized curves. The dip at this same wavelength but at a slightly lower temperature

(Fig. 3.38(a)) is an indication that the critical coupling condition is reached for a lower

temperature in the presence of antennas due to enhanced absorption in the VO2.

While we presently demonstrated thermal tuning of an entire antenna array, DC and AC

fields can be applied to individual antennas or even individual sections of antennas on

isolated patches of VO2, creating a tunable inhomogeneous distribution of amplitude and
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phase responses within an array of antennas. Such a demonstration would be of interest

to realizing antenna-based spatial light modulators capable of addressing amplitude and

phase of infrared and terahertz light, active and passive thermal labels and emitters,

displays, and related dynamically-reconfigurable devices.

3.10.2 Electrostatic doping in graphene as a tuning mechanism

While VO2 is a potential candidate for tuning the response of optical antennas, the

additional optical losses induced by the transition tend to lead to a broadening and

eventual disappearance of the antenna resonance (Figs. 3.38 and 3.39), and therefore

it is uncertain if it can be used to obtain wide dynamic control of phased antenna

metasurfaces.

In this section we briefly discuss an alternative tuning mechanism based on electrostatic

doping of graphene. A more full discussion of this tuning technique and its application

to optical antennas can be found in ref. [219]. Graphene is a well-studied material, com-

prising a monolayer of hexagonally-arranged carbon atoms [220], exhibits gate-voltage

dependent optical conductivity and can be used as an electrically tunable plasmonic

material [221] [222]. In particular, we show that graphene can be integrated into the

nano-gaps of coupled optical antennas to achieve broad tuning of an antenna resonance.

The origin of gate-voltage dependent optical properties in graphene lies in the fact that

its carrier density and Fermi level can be controlled by the gate voltage, or in other

words, electrostatic doping.

The graphene sheet optical conductivity used in our calculations and simulations is

derived within the random-phase approximation (RPA) in the local limit [223].
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Where kB is the Boltzman constant, T is the temperature, ω is the frequency, τ is

the carrier relaxation lifetime, and EF is the Fermi level, which is dependent on the

graphene doping. The first term of Eqn. 3.26 is attributed to intraband transitions

and the second term to interband transitions. When the Fermi level is below half of the

photon energy (Eph = }ω), the contribution from the interband transition dominates the

optical conductivity. Once the Fermi level is increased above half of the photon energy,

interband transitions are diminished due to Pauli blocking and intraband transitions

play an important role. In this region, the real part of graphene permittivity εr becomes

dominant over the imaginary part εi. As the doping density increases, the real part of

the permittivity decreases; we utilized this doping-dependent permittivity to tune the

resonances of optical antennas.

Just as with the VO2 in the last section, when a tunable material such as graphene is

introduced in the vicinity of an optical antenna, the antenna resonance is shifted. As

the graphene doping density increases, the real part of the permittivity of the graphene

becomes smaller (∆ε < 0); therefore, the antenna resonance will be blue-shifted (∆ω >

0). Without going into the experimental data or semi-analytical models which can be

found in ref. [219], we present the simulation data for optical antennas sitting on a sheet

of graphene, on a silicon substrate with a thin layer of thermal native oxide. Instead of

simple linear antennas or V-shaped antennas such as the ones used in earlier sections, we

used antennas with small gaps (either pairs, quadruplets, or 1D arrays (Fig. 3.40(c))).
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We use the enhanced fields in the antenna gaps [224] to increase the interaction between

the tunable graphene region and light (Fig. 3.40(a)). In fact, by using a structure with

a 20 nm gap, a 300% increase in the wavelength tuning range can be achieved compared

to the tuning of isolated rod antennas (Fig. 3.40(b)).

The antenna tuning that can be expected to be achieved with these gaps corresponds

to a resonant shift between approximately 7 µm and 8 µm in the antenna resonant

wavelength. While this shift is not much larger than what we achieved with VO2 in the

previous section, it does not lead to the same degradation of the antenna quality factor.

This, in our opinion, this technique is more promising than tuning techniques based on

VO2, at least in the mid-infrared spectral range.

Figure 3.40: a) Field distribution in the gap between antennas. b) Calculated tuning
ranges and confinement factors as functions of the gap size g. c) Schematic of end-to-
end coupled antenna array. d) Near field enhancement (in the center of the gap) peak
wavelength of an antenna pair, antenna quadruplet, and 1D antenna array (gap size 20
nm) as well as scattering resonance peak wavelength of 1D antenna array obtained by
FDTD simulations (the substrate is 30 nm silicon oxide on silicon). All simulations and
calculations are performed for 240 nm wide, 1.8 m long, 40 nm thick gold antennas.
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3.11 Conclusion

In summary, this chapter discusses the phase response of plasmonic antennas and a new

class of planar optical components, “metasurfaces”, which are based on phased optical

antenna arrays. The control of phase response is achieved by choosing antenna geome-

try so it operates at different positions on the antenna resonance curve, corresponding

to different phase shifts between the scattered and incident light. The metasurface

design features subwavelength control of phase, amplitude, and polarization of optical

wavefront without relying on the propagation effect. This is very different from con-

ventional optical components such as lenses, diffractive optics, and wave plates. The

subwavelength resolution of metasurface will enable not only far-field engineering but

also near-field and meso-field engineering of optical wavefronts. Eventually, dynami-

cally tunable optical antennas will serve as components for active metasurfaces which

will enable applications such as beam steering and ultra-fast displays and spatial light

modulators between the visible and the far-infrared.

148



Chapter 4

Conclusion

The focus of this thesis has been on the manipulation of light using functional surfaces

that are significantly thinner than a single wavelength of light. In Chapter 2 we de-

scribed a new special case of thin film interference which utilizes highly-lossy materials.

This concept arises when optical loss is treated as an important design component rather

than as a perturbation or as something undesirable, and this can only be done when

structures are very thin such that not all light is absorbed through a single pass. These

may find their way into many intriguing applications from printing, labeling, and visual

design to optoelectronic devices with enhanced efficiencies. The possibility of creating

ultra-thin photovoltaics, photoconductors, and other types of light harvesters and detec-

tors is particularly appealing as it may reduce the cost of devices while increasing speed

and efficiency. In Chapter 3 we described quasi-two dimensional structures consisting of

arrays of subwavelength resonators for direct control of the amplitude, phase, and polar-

ization of light as it traverses an interface. While our experimental demonstrations have

shown several interesting optical phenomena such as anomalous reflection and refrac-

tion and applications such as arbitrary wavefront generation, additional development is
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necessary before these structures find their way into devices. In particular higher con-

version efficiencies must be achieved before these ultra-flat lenses, wave-plates, etc. will

be able to compete against conventional refractive and diffractive optical components.

Given the state of the literature it seems that this is now within reach, at least for longer

wavelengths. Combining these wavefront-manipulating structures with tunable optical

materials may ultimately lead to new reconfigurable optical devices.
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Stéphane Mainguy, and Yong Chen. Coherent emission of light by thermal sources.
Nature, 416(6876):61–4, March 2002.

[83] M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T.
Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas. Photonic
crystal enhanced narrow-band infrared emitters. Applied Physics Letters, 81(25):
4685, 2002.

[84] N J Harrick and A F Turner. A thin film optical cavity to induce absorption or
thermal emission. Applied optics, 9(9):2111–4, September 1970.

156

http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=884706
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=884706


Bibliography

[85] Ivan Celanovic, David Perreault, and John Kassakian. Resonant-cavity enhanced
thermal emission. Physical Review B, 72(7):075127, August 2005.

[86] Jon A. Schuller, Thomas Taubner, and Mark L. Brongersma. Optical antenna
thermal emitters. Nature Photonics, 3(11):658–661, October 2009.

[87] Xianliang Liu, Talmage Tyler, Tatiana Starr, Anthony F. Starr, Nan Marie Jok-
erst, and Willie J. Padilla. Taming the Blackbody with Infrared Metamaterials as
Selective Thermal Emitters. Physical Review Letters, 107(4):045901, July 2011.

[88] F Guinneton, L Sauques, J.C Valmalette, F Cros, and J.R Gavarri. Comparative
study between nanocrystalline powder and thin film of vanadium dioxide VO2:
electrical and infrared properties. Journal of Physics and Chemistry of Solids, 62
(7):1229–1238, 2001.

[89] Frédéric Guinneton, Laurent Sauques, Jean-Christophe Valmalette, Frédéric Cros,
and Jean-Raymond Gavarri. Optimized infrared switching properties in ther-
mochromic vanadium dioxide thin films: role of deposition process and microstruc-
ture. Thin Solid Films, 446(2):287–295, 2004.

[90] R. Li Voti, M. C. Larciprete, G. Leahu, C. Sibilia, and M. Bertolotti. Optimization
of thermochromic VO2 based structures with tunable thermal emissivity. Journal
of Applied Physics, 112(3):034305, 2012.

[91] John Topping, Alexander. STRUCTURE WITH VARIABLE EMITTANCE, Oc-
tober 2002. URL http://patentscope.wipo.int/search/en/WO2002082172.

[92] R.J. Lauf, C. Hamby, M. A. Akerman, and A. W. Trivelpiece. Blackbody material,
1994.

[93] N Gao, H Sun, and D Ewing. Heat transfer to impinging round jets with triangular
tabs. International Journal of Heat and Mass Transfer, 46(14):2557–2569, 2003.

[94] M. H. Friedman. Patent US5734495 - Passive control of emissivity, color
and camouflage, 1998. URL http://www.google.com/patents?hl=en&lr=

&vid=USPAT5734495&id=8Y8kAAAAEBAJ&oi=fnd&dq=Passive+control+of+

emissivity,+color+and+camouflage&printsec=abstract#v=onepage&q=

Passivecontrolofemissivity,colorandcamouflage&f=false.

[95] Sergey Shilov. Emission measurements (unpublished). 2012.

[96] J. Narayan and V. M. Bhosle. Phase transition and critical issues in structure-
property correlations of vanadium oxide. Journal of Applied Physics, 100(10):
103524, 2006.

[97] Y Muraoka, Y Ueda, and Z Hiroi. Large modification of the metalinsulator tran-
sition temperature in strained VO2 films grown on TiO2 substrates. Journal of
Physics and Chemistry of Solids, 63(6):965–967, 2002.

[98] Hisao Futaki and Minoru Aoki. Effects of Various Doping Elements on the Tran-
sition Temperature of Vanadium Oxide Semiconductors. Japanese Journal of Ap-
plied Physics, 8(8):1008–1013, August 1969.

157

http://patentscope.wipo.int/search/en/WO2002082172
http://www.google.com/patents?hl=en&lr=&vid=USPAT5734495&id=8Y8kAAAAEBAJ&oi=fnd&dq=Passive+control+of+emissivity,+color+and+camouflage&printsec=abstract#v=onepage&q=Passive control of emissivity, color and camouflage&f=false
http://www.google.com/patents?hl=en&lr=&vid=USPAT5734495&id=8Y8kAAAAEBAJ&oi=fnd&dq=Passive+control+of+emissivity,+color+and+camouflage&printsec=abstract#v=onepage&q=Passive control of emissivity, color and camouflage&f=false
http://www.google.com/patents?hl=en&lr=&vid=USPAT5734495&id=8Y8kAAAAEBAJ&oi=fnd&dq=Passive+control+of+emissivity,+color+and+camouflage&printsec=abstract#v=onepage&q=Passive control of emissivity, color and camouflage&f=false
http://www.google.com/patents?hl=en&lr=&vid=USPAT5734495&id=8Y8kAAAAEBAJ&oi=fnd&dq=Passive+control+of+emissivity,+color+and+camouflage&printsec=abstract#v=onepage&q=Passive control of emissivity, color and camouflage&f=false


Bibliography

[99] Masami Nishikawa, Tomohiko Nakajima, Toshiya Kumagai, Takeshi Okutani, and
Tetsuo Tsuchiya. Adjustment of thermal hysteresis in epitaxial VO2 films by
doping metal ions. Journal of the Ceramic Society of Japan, 119(1391):577–580,
2011.

[100] Stephanie Law, Viktor Podolskiy, and Daniel Wasserman. Towards nano-scale pho-
tonics with micro-scale photons: the opportunities and challenges of mid-infrared
plasmonics. Nanophotonics, 2(2):103–130, April 2013.

[101] Mikhail A Kats, Romain Blanchard, Patrice Genevet, Zheng Yang, M Mumtaz
Qazilbash, D N Basov, Shriram Ramanathan, and Federico Capasso. Thermal
tuning of mid-infrared plasmonic antenna arrays using a phase change material.
Optics Letters, 38(3):368–370, 2013.

[102] V. G. Golubev, V. Yu. Davydov, N. F. Kartenko, D. A. Kurdyukov, A. V.
Medvedev, A. B. Pevtsov, A. V. Scherbakov, and E. B. Shadrin. Phase transition-
governed opalVO2 photonic crystal. Applied Physics Letters, 79(14):2127, 2001.

[103] Wikipedia. Resonance, 2013. URL http://en.wikipedia.org/wiki/Resonance.

[104] Amnon Yariv and Pochi Yeh. Photonics: Optical Electronics in Modern Commu-
nications (The Oxford Series in Electrical and Computer Engineering). Oxford
University Press, USA, 2006. ISBN 0195179463.

[105] AE Siegman. Lasers University Science Books. Mill Valley, CA, 1986.

[106] Takeshi Watanabe, Masaaki Fujii, Yoshi Watanabe, Nobuhito Toyama, and Yoshi-
nori Iketaki. Generation of a doughnut-shaped beam using a spiral phase plate.
Review of Scientific Instruments, 75(12):5131, 2004.

[107] JH McLeod. The axicon: a new type of optical element. JOSA, 1954.

[108] D Casasent. Spatial light modulators. Proceedings of the IEEE, 1977.

[109] JW Goodman. Introduction to Fourier optics. 2005.

[110] JB Pendry, D Schurig, and DR Smith. Controlling electromagnetic fields. Science,
2006.

[111] U Leonhardt. Optical conformal mapping. Science, 2006.
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with plasmonic nanoslit metamaterials at Fano resonance. Physical Review B,
2010.

[172] JF Nye and MV Berry. Dislocations in wave trains. . . . of the Royal Society of
London. . . . , 1974.

[173] Miles Padgett, Johannes Courtial, and Les Allen. Light’s Orbital Angular Mo-
mentum. Physics Today, 57(5):35, May 2004.

[174] L. Allen, MW Beijersbergen, R. Spreeuw, and J. Woerdman. Orbital angular
momentum of light and the transformation of Laguerre-Gaussian laser modes.
Physical Review A, 45(11):8185–8189, June 1992.

[175] MW Beijersbergen and RPC Coerwinkel. Helical-wavefront laser beams produced
with a spiral phaseplate. Optics . . . , 1994.

[176] N. R. NR Heckenberg, R. McDuff, C. P. CP Smith, and A. G. AG White. Gener-
ation of optical phase singularities by computer-generated holograms. Opt. Lett,
17(3):221, February 1992.

[177] VY Bazhenov, MV Vasnetsov, and MS Soskin. Laser beams with screw dislocations
in their wavefronts. Jetp Lett, 1990.

[178] A.G. AG White, CP C.P. Smith, N.R. Heckenberg, H. Rubinsztein-Dunlop, R. Mc-
Duff, C.O. Weiss, and Chr. Tamm. Interferometric measurements of phase singu-
larities in the output of a visible laser. Journal of Modern . . . , 38(12):2531–2541,
December 1991.

[179] Stefan W Hell. Far-field optical nanoscopy. Science (New York, N.Y.), 316(5828):
1153–8, May 2007.

[180] H He and MEJ Friese. Direct observation of transfer of angular momentum to
absorptive particles from a laser beam with a phase singularity. Physical Review
Letters, 1995.

[181] Miles Padgett and Richard Bowman. Tweezers with a twist. Nature Photonics, 5
(6):343–348, June 2011.

[182] Jonathan Leach, Miles MJ Padgett, Stephen Barnett, Sonja Franke-Arnold, and
Johannes Courtial. Measuring the Orbital Angular Momentum of a Single Photon.
Physical Review Letters, 88(25):257901, June 2002.

162



Bibliography

[183] G Gibson, J Courtial, and MJ Padgett. Free-space information transfer using light
beams carrying orbital angular momentum. Opt. . . . , 2004.

[184] A. Papakostas, A. Potts, D. Bagnall, S. Prosvirnin, H. Coles, and N. Zheludev. Op-
tical Manifestations of Planar Chirality. Physical Review Letters, 90(10):107404,
March 2003.

[185] S. Prosvirnin and N. Zheludev. Polarization effects in the diffraction of light by a
planar chiral structure. Physical Review E, 71(3):037603, March 2005.

[186] E. Plum, J. Zhou, J. Dong, V. Fedotov, T. Koschny, C. Soukoulis, and N. Zheludev.
Metamaterial with negative index due to chirality. Physical Review B, 79(3):
035407, January 2009.

[187] Shuang Zhang, Yong-Shik Park, Jensen Li, Xinchao Lu, Weili Zhang, and Xi-
ang Zhang. Negative Refractive Index in Chiral Metamaterials. Physical Review
Letters, 102(2):023901, January 2009.

[188] Xiang Xiong, Wei-Hua Sun, Yong-Jun Bao, Mu Wang, Ru-Wen Peng, Cheng Sun,
Xiang Lu, Jun Shao, Zhi-Feng Li, and Nai-Ben Ming. Construction of a chiral
metamaterial with a U-shaped resonator assembly. Physical Review B, 81(7):
075119, February 2010.

[189] M Decker, R Zhao, C M Soukoulis, S Linden, and M Wegener. Twisted split-ring-
resonator photonic metamaterial with huge optical activity. Optics letters, 35(10):
1593–5, May 2010.

[190] Justyna K Gansel, Michael Thiel, Michael S Rill, Manuel Decker, Klaus Bade,
Volker Saile, Georg von Freymann, Stefan Linden, and Martin Wegener. Gold
helix photonic metamaterial as broadband circular polarizer. Science (New York,
N.Y.), 325(5947):1513–5, September 2009.
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