4 research outputs found

    Early onset and novel features in a spinal and bulbar muscular atrophy patient with a 68 CAG repeat

    Get PDF
    AbstractSpinal and bulbar muscular atrophy (SBMA) is an X-linked neuromuscular disease caused by a trinucleotide (CAG) repeat expansion in the androgen receptor gene. Patients with SBMA have weakness, atrophy, and fasciculations in the bulbar and extremity muscles. Individuals with CAG repeat lengths greater than 62 have not previously been reported. We evaluated a 29year old SBMA patient with 68 CAGs who had unusually early onset and findings not seen in others with the disease. Analysis of the androgen receptor gene confirmed the repeat length of 68 CAGs in both peripheral blood and fibroblasts. Evaluation of muscle and sensory function showed deficits typical of SBMA, and in addition the patient had manifestations of autonomic dysfunction and abnormal sexual development. These findings extend the known phenotype associated with SBMA and shed new insight into the effects of the mutated androgen receptor

    A randomized controlled trial of exercise in spinal and bulbar muscular atrophy.

    Get PDF
    OBJECTIVE: To determine the safety and efficacy of a home-based functional exercise program in spinal and bulbar muscular atrophy (SBMA). METHODS: Subjects were randomly assigned to participate in 12 weeks of either functional exercises (intervention) or a stretching program (control) at the National Institutes of Health in Bethesda, MD. A total of 54 subjects enrolled, and 50 completed the study with 24 in the functional exercise group and 26 in the stretching control group. The primary outcome measure was the Adult Myopathy Assessment Tool (AMAT) total score, and secondary measures included total activity by accelerometry, muscle strength, balance, timed up and go, sit-to-stand test, health-related quality of life, creatine kinase, and insulin-like growth factor-1. RESULTS: Functional exercise was well tolerated but did not lead to significant group differences in the primary outcome measure or any of the secondary measures. The functional exercise did not produce significantly more adverse events than stretching, and was not perceived to be difficult. To determine whether a subset of the subjects may have benefited, we divided them into high and low functioning based on baseline AMAT scores and performed a post hoc subgroup analysis. Low-functioning individuals receiving the intervention increased AMAT functional subscale scores compared to the control group. INTERPRETATION: Although these trial results indicate that functional exercise had no significant effect on total AMAT scores or on mobility, strength, balance, and quality of life, post hoc findings indicate that low-functioning men with SBMA may respond better to functional exercises, and this warrants further investigation with appropriate exercise intensity

    Stem cell-derived motor neurons from spinal and bulbar muscular atrophy patients

    Get PDF
    AbstractSpinal and bulbar muscular atrophy (SBMA, Kennedy's disease) is a motor neuron disease caused by polyglutamine repeat expansion in the androgen receptor. Although degeneration occurs in the spinal cord and muscle, the exact mechanism is not clear. Induced pluripotent stem cells from spinal and bulbar muscular atrophy patients provide a useful model for understanding the disease mechanism and designing effective therapy. Stem cells were generated from six patients and compared to control lines from three healthy individuals. Motor neurons from four patients were differentiated from stem cells and characterized to understand disease-relevant phenotypes. Stem cells created from patient fibroblasts express less androgen receptor than control cells, but show androgen-dependent stabilization and nuclear translocation. The expanded repeat in several stem cell clones was unstable, with either expansion or contraction. Patient stem cell clones produced a similar number of motor neurons compared to controls, with or without androgen treatment. The stem cell-derived motor neurons had immunoreactivity for HB9, Isl1, ChAT, and SMI-32, and those with the largest repeat expansions were found to have increased acetylated α-tubulin and reduced HDAC6. Reduced HDAC6 was also found in motor neuron cultures from two other patients with shorter repeats. Evaluation of stably transfected mouse cells and SBMA spinal cord showed similar changes in acetylated α-tubulin and HDAC6. Perinuclear lysosomal enrichment, an HDAC6 dependent process, was disrupted in motor neurons from two patients with the longest repeats. SBMA stem cells present new insights into the disease, and the observations of reduced androgen receptor levels, repeat instability, and reduced HDAC6 provide avenues for further investigation of the disease mechanism and development of effective therapy
    corecore