5,638 research outputs found

    An Association Analysis between Mitochondrial DNA A10398G Polymorphism and Temperament in Japanese Young Adults

    Get PDF
    The mitochondrial (mt) DNA C5178A and A10398G polymorphisms have been reported to be associated with mental disorders such as bipolar disorder. However, the effects of these polymorphisms on temperament in healthy people are poorly understood. Evaluating healthy subjects can have the advantage of providing new strategies for maintaining psychological health and preventing mental illness. We examined the association between mtDNA polymorphisms and temperament in Japanese students. There was no significant difference in examined temperament when analysed by genotypes, 5178–10398 haplotypes, or sex. The subgroup analysis based on sex indicated that there was an interactive effect of the mtDNA A10398G polymorphism and sex on anxiety and obsession. This finding is preliminary and cannot exclude the possibility of false-positive due to small sample size (144 subjects) and multiple statistical testing. Further studies involving a larger sample size or other ethnic groups are necessary to confirm that mtDNA A10398G polymorphism can be a genetic factor for temperament

    Observation of spin Coulomb drag in a two-dimensional electron gas

    Get PDF
    An electron propagating through a solid carries spin angular momentum in addition to its mass and charge. Of late there has been considerable interest in developing electronic devices based on the transport of spin, which offer potential advantages in dissipation, size, and speed over charge-based devices. However, these advantages bring with them additional complexity. Because each electron carries a single, fixed value (-e) of charge, the electrical current carried by a gas of electrons is simply proportional to its total momentum. A fundamental consequence is that the charge current is not affected by interactions that conserve total momentum, notably collisions among the electrons themselves. In contrast, the electron's spin along a given spatial direction can take on two values, "up" and "down", so that the spin current and momentum need not be proportional. Although the transport of spin polarization is not protected by momentum conservation, it has been widely assumed that, like the charge current, spin current is unaffected by electron-electron (e-e) interactions. Here we demonstrate experimentally not only that this assumption is invalid, but that over a broad range of temperature and electron density, the flow of spin polarization in a two-dimensional gas of electrons is controlled by the rate of e-e collisions

    X-ray Properties of Black-Hole Binaries

    Get PDF
    We review the properties and behavior X-ray binaries that contain an accreting black hole. The larger majority of such systems are X-ray transients, and many of them were observed in daily pointings with RXTE throughout the course of their outbursts. The complex evolution of these sources is described in terms of common behavior patterns illustrated with comprehensive overview diagrams for six selected systems. Central to this comparison are three X-ray states of accretion, which are reviewed and defined quantitatively. Each state yields phenomena that arise in strong gravitational fields. We sketch a scenario for the potential impact of black hole observations on physics and discuss a current frontier topic: the measurement of black hole spin.Comment: 39 pages, 12 figures, ARAA, vol. 44, in pres

    Observation of Faraday rotation from a single confined spin

    Get PDF
    Ability to read-out the state of a single confined spin lies at the heart of solid-state quantum information processing. While all-optical spin measurements using Faraday rotation has been successfully implemented in ensembles of semiconductor spins, read-out of a single semiconductor spin has only been achieved using transport measurements based on spin-charge conversion. Here, we demonstrate an all-optical dispersive measurement of the spin-state of a single electron trapped in a semiconductor quantum dot. We obtain information on the spin state through conditional Faraday rotation of a spectrally detuned optical field, induced by the polarization- and spin-selective trion (charged quantum dot) transitions. To assess the sensitivity of the technique, we use an independent resonant laser for spin-state preparation. An all-optical dispersive measurement on single spins has the important advantage of channeling the measurement back-action onto a conjugate observable, thereby allowing for repetitive or continuous quantum nondemolition (QND) read-out of the spin-state. We infer from our results that there are of order unity back-action induced spin-flip Raman scattering events within our measurement timescale. Therefore, straightforward improvements such as the use of a solid-immersion lens and higher efficiency detectors would allow for back-action evading spin measurements, without the need for a cavity

    Mesoscopic spin confinement during acoustically induced transport

    Full text link
    Long coherence lifetimes of electron spins transported using moving potential dots are shown to result from the mesoscopic confinement of the spin vector. The confinement dimensions required for spin control are governed by the characteristic spin-orbit length of the electron spins, which must be larger than the dimensions of the dot potential. We show that the coherence lifetime of the electron spins is independent of the local carrier densities within each potential dot and that the precession frequency, which is determined by the Dresselhaus contribution to the spin-orbit coupling, can be modified by varying the sample dimensions resulting in predictable changes in the spin-orbit length and, consequently, in the spin coherence lifetime.Comment: 10 pages, 2 figure

    Electronic measurement and control of spin transport in Silicon

    Full text link
    The electron spin lifetime and diffusion length are transport parameters that define the scale of coherence in spintronic devices and circuits. Since these parameters are many orders of magnitude larger in semiconductors than in metals, semiconductors could be the most suitable for spintronics. Thus far, spin transport has only been measured in direct-bandgap semiconductors or in combination with magnetic semiconductors, excluding a wide range of non-magnetic semiconductors with indirect bandgaps. Most notable in this group is silicon (Si), which (in addition to its market entrenchment in electronics) has long been predicted a superior semiconductor for spintronics with enhanced lifetime and diffusion length due to low spin-orbit scattering and lattice inversion symmetry. Despite its exciting promise, a demonstration of coherent spin transport in Si has remained elusive, because most experiments focused on magnetoresistive devices; these methods fail because of universal impedance mismatch obstacles, and are obscured by Lorentz magnetoresistance and Hall effects. Here we demonstrate conduction band spin transport across 10 microns undoped Si, by using spin-dependent ballistic hot-electron filtering through ferromagnetic thin films for both spin-injection and detection. Not based on magnetoresistance, the hot electron spin-injection and detection avoids impedance mismatch issues and prevents interference from parasitic effects. The clean collector current thus shows independent magnetic and electrical control of spin precession and confirms spin coherent drift in the conduction band of silicon.Comment: Single PDF file with 4 Figure

    Measurement of Rashba and Dresselhaus spin-orbit magnetic fields

    Full text link
    Spin-orbit coupling is a manifestation of special relativity. In the reference frame of a moving electron, electric fields transform into magnetic fields, which interact with the electron spin and lift the degeneracy of spin-up and spin-down states. In solid-state systems, the resulting spin-orbit fields are referred to as Dresselhaus or Rashba fields, depending on whether the electric fields originate from bulk or structure inversion asymmetry, respectively. Yet, it remains a challenge to determine the absolute value of both contributions in a single sample. Here we show that both fields can be measured by optically monitoring the angular dependence of the electrons' spin precession on their direction of movement with respect to the crystal lattice. Furthermore, we demonstrate spin resonance induced by the spin-orbit fields. We apply our method to GaAs/InGaAs quantum-well electrons, but it can be used universally to characterise spin-orbit interactions in semiconductors, facilitating the design of spintronic devices

    Observation of second-harmonic generation induced by pure spin currents

    Get PDF
    Extensive efforts are currently being devoted to developing a new electronic technology, called spintronics, where the spin of electrons is explored to carry information. [1,2] Several techniques have been developed to generate pure spin currents in many materials and structures. [3-10] However, there is still no method available that can be used to directly detect pure spin currents, which carry no net charge current and no net magnetization. Currently, studies of pure spin currents rely on measuring the induced spin accumulation with optical techniques [5, 11-13] or spin-valve configurations. [14-17] However, the spin accumulation does not directly reflect the spatial distribution or temporal dynamics of the pure spin current, and therefore cannot monitor the pure spin current in a real-time and real-space fashion. This imposes severe constraints on research in this field. Here we demonstrate a second-order nonlinear optical effect of the pure spin current. We show that such a nonlinear optical effect, which has never been explored before, can be used for the non-invasive, non-destructive, and real-time imaging of pure spin currents. Since this detection scheme does not rely on optical resonances, it can be generally applied in a wide range of materials with different electronic bandstructures. Furthermore, the control of nonlinear optical properties of materials with pure spin currents may have potential applications in photonics integrated with spintronics.Comment: 19 pages, 3 figures, supplementary discussion adde

    Urinary MicroRNA Profiling in the Nephropathy of Type 1 Diabetes

    Get PDF
    Background: Patients with Type 1 Diabetes (T1D) are particularly vulnerable to development of Diabetic nephropathy (DN) leading to End Stage Renal Disease. Hence a better understanding of the factors affecting kidney disease progression in T1D is urgently needed. In recent years microRNAs have emerged as important post-transcriptional regulators of gene expression in many different health conditions. We hypothesized that urinary microRNA profile of patients will differ in the different stages of diabetic renal disease. Methods and Findings: We studied urine microRNA profiles with qPCR in 40 T1D with >20 year follow up 10 who never developed renal disease (N) matched against 10 patients who went on to develop overt nephropathy (DN), 10 patients with intermittent microalbuminuria (IMA) matched against 10 patients with persistent (PMA) microalbuminuria. A Bayesian procedure was used to normalize and convert raw signals to expression ratios. We applied formal statistical techniques to translate fold changes to profiles of microRNA targets which were then used to make inferences about biological pathways in the Gene Ontology and REACTOME structured vocabularies. A total of 27 microRNAs were found to be present at significantly different levels in different stages of untreated nephropathy. These microRNAs mapped to overlapping pathways pertaining to growth factor signaling and renal fibrosis known to be targeted in diabetic kidney disease. Conclusions: Urinary microRNA profiles differ across the different stages of diabetic nephropathy. Previous work using experimental, clinical chemistry or biopsy samples has demonstrated differential expression of many of these microRNAs in a variety of chronic renal conditions and diabetes. Combining expression ratios of microRNAs with formal inferences about their predicted mRNA targets and associated biological pathways may yield useful markers for early diagnosis and risk stratification of DN in T1D by inferring the alteration of renal molecular processes. © 2013 Argyropoulos et al

    Primary adenocarcinoma of the stomach in von Recklinghausen's disease with high serum levels of multiple tumor markers: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Gastric tumors in patients affected by neurofibromatosis type 1 are usually carcinoids or stromal tumors, and rarely adenocarcinomas.</p> <p>Case presentation</p> <p>We report a case of an adenocarcinoma of the stomach in a 53-year-old Japanese man with neurofibromatosis type 1. An abdominal computed tomography scan and ultrasonography showed tumors in his liver. Gastric fibroscopy revealed a Borrmann type III tumor on his cardia that had spread to his esophagus and was highly suspicious for malignancy. Multiple biopsies showed an adenocarcinoma of the stomach, which was evaluated as gastric cancer, stage IV. Chemotherapy with TS-1 was performed. Our patient died four weeks after initial admission. Histological examination of a liver needle biopsy showed metastatic adenocarcinoma in his liver.</p> <p>Conclusion</p> <p>To the best of our knowledge, high serum levels of α-fetoprotein, carcinoembryonic antigen, and carbohydrate antigen 72-4, resulting from gastric adenocarcinoma, have not been reported previously in a patient with neurofibromatosis type 1. We report this rare case along with a review of the literature.</p
    corecore