2 research outputs found

    Prediction of rockburst intensity grade in deep underground excavation using adaptive boosting classifier

    Get PDF
    Rockburst phenomenon is the primary cause of many fatalities and accidents during deep underground projects constructions. As a result, its prediction at the early design stages plays a significant role in improving safety.(e article describes a newly developed model to predict rockburst intensity grade using Adaptive Boosting (AdaBoost) classifier. A database including 165 rockburst case histories was collected from across the world to achieve a comprehensive representation, in which four key influencing factors such as maximum tangential stress of the excavation boundary, uniaxial compressive strength of rock, tensile rock strength, and elastic energy index were selected as the input variables, and the rockburst intensity grade was selected as the output. (e output of the AdaBoost model is evaluated using statistical parameters including accuracy and Cohen’s kappa index. (e applications for the aforementioned approach for predicting the rockburst intensity grade are compared and discussed. Finally, two real-world applications are used to verify the proposed AdaBoost model. It is found that the prediction results are consistent with the actual conditions of the subsequent construction

    Effects of Using Silica Fume and Polycarboxylate-Type Superplasticizer on Physical Properties of Cementitious Grout Mixtures for Semiflexible Pavement Surfacing

    Get PDF
    Semi-flexible pavement surfacing is a composite pavement that utilizes the porous pavement structure of the flexible bituminous pavement, which is subsequently grouted with appropriate cementitious materials. This study aims to investigate the compressive strength, flexural strength, and workability performance of cementitious grout. The grout mixtures are designed to achieve high strength and maintain flow properties in order to allow the cement slurries to infiltrate easily through unfilled compacted skeletons. A paired-sample t-test was carried out to find out whether water/cement ratio, SP percentages, and use of silica fume influence the cementitious grout performance. The findings showed that the replacement of 5% silica fume with an adequate amount of superplasticizer and water/cement ratio was beneficial in improving the properties of the cementitious grout
    corecore