354 research outputs found

    Silymarin Targets β-Catenin Signaling in Blocking Migration/Invasion of Human Melanoma Cells

    Get PDF
    Metastatic melanoma is a leading cause of death from skin diseases, and is often associated with activation of Wnt/β-catenin signaling pathway. We have examined the inhibitory effect of silymarin, a plant flavanoid from Silybum marianum, on cell migration of metastasis-specific human melanoma cell lines (A375 and Hs294t) and assessed whether Wnt/β-catenin signaling is the target of silymarin. Using an in vitro invasion assay, we found that treatment of human melanoma cell lines with silymarin resulted in concentration-dependent inhibition of cell migration, which was associated with accumulation of cytosolic β-catenin, while reducing the nuclear accumulation of β-catenin (i.e., β-catenin inactivation) and reducing the levels of matrix metalloproteinase (MMP) -2 and MMP-9 which are the down-stream targets of β-catenin. Silymarin enhanced: (i) the levels of casein kinase 1α, glycogen synthase kinase-3β and phosphorylated-β-catenin on critical residues Ser45, Ser33/37 and Thr41, and (ii) the binding of β-transducin repeat-containing proteins (β-TrCP) with phospho forms of β-catenin in melanoma cells. These events play important roles in degradation or inactivation of β-catenin. To verify whether β-catenin is a potent molecular target of silymarin, the effect of silymarin was determined on β-catenin-activated (Mel 1241) and β-catenin-inactivated (Mel 1011) melanoma cells. Treatment of Mel 1241 cells with silymarin or FH535, an inhibitor of Wnt/β-catenin pathway, significantly inhibited cell migration of Mel 1241 cells, which was associated with the elevated levels of casein kinase 1α and glycogen synthase kinase-3β, and decreased accumulation of nuclear β-catenin and inhibition of MMP-2 and MMP-9 levels. However, this effect of silymarin and FH535 was not found in Mel 1011 melanoma cells. These results indicate for the first time that silymarin inhibits melanoma cell migration by targeting β-catenin signaling pathway

    A Novel Liquid Multi-Phytonutrient Supplement Demonstrates DNA-Protective Effects

    Get PDF
    This study explored the DNA protective (anti-mutagenic) effects of an oral, liquid, multi-phytonutrient dietary supplement containing a proprietary blend of fruits, vegetables and aloe vera concentrated components in addition to a proprietary catechin complex from green tea (VIBE Cardiac & Life, Eniva Nutraceuticals, Anoka, MN; herein described as “VIBE”). This study tested the hypothesis that VIBE would reduce DNA damage in skin cells exposed to UVR. Human epidermal cells, from the cell line A431NS, were treated with 0% (control), 0.125%, 0.5%, 1% and 2% VIBE, and then exposed to 240 J/m2 UVR. The amount of DNA damage was assessed using the COMET assay. At each concentration tested, a significantly smaller amount of DNA damage was measured by the COMET assay for the VIBE treated cells compared to the control cells exposed to UVR without VIBE. The dose response curves showed a maximal response at 0.5% VIBE with a threefold reduction in COMET tail density compared to the control samples without VIBE (p < 0.001). Additional research is warranted in human clinical trials to further explore the results of this study which demonstrated the DNA protective and anti-mutagenic effects of VIBE for human skin cells exposed to UVR-induced DNA damage

    The Chemopreventive Effects of Protandim: Modulation of p53 Mitochondrial Translocation and Apoptosis during Skin Carcinogenesis

    Get PDF
    Protandim, a well defined dietary combination of 5 well-established medicinal plants, is known to induce endogenous antioxidant enzymes, such as manganese superoxide dismutase (MnSOD). Our previous studies have shown through the induction of various antioxidant enzymes, products of oxidative damage can be decreased. In addition, we have shown that tumor multiplicity and incidence can be decreased through the dietary administration of Protandim in the two-stage skin carcinogenesis mouse model. It has been demonstrated that cell proliferation is accommodated by cell death during DMBA/TPA treatment in the two-stage skin carcinogenesis model. Therefore, we investigated the effects of the Protandim diet on apoptosis; and proposed a novel mechanism of chemoprevention utilized by the Protandim dietary combination. Interestingly, Protandim suppressed DMBA/TPA induced cutaneous apoptosis. Recently, more attention has been focused on transcription-independent mechanisms of the tumor suppressor, p53, that mediate apoptosis. It is known that cytoplasmic p53 rapidly translocates to the mitochondria in response to pro-apoptotic stress. Our results showed that Protandim suppressed the mitochondrial translocation of p53 and mitochondrial outer membrane proteins such as Bax. We examined the levels of p53 and MnSOD expression/activity in murine skin JB6 promotion sensitive (P+) and promotion-resistant (P-) epidermal cells. Interestingly, p53 was induced only in P+ cells, not P- cells; whereas MnSOD is highly expressed in P- cells when compared to P+ cells. In addition, wild-type p53 was transfected into JB6 P- cells. We found that the introduction of wild-type p53 promoted transformation in JB6 P- cells. Our results suggest that suppression of p53 and induction of MnSOD may play an important role in the tumor suppressive activity of Protandim

    Sunscreens - Which and what for?

    Get PDF
    It is well established that sun exposure is the main cause for the development of skin cancer. Chronic continuous UV radiation is believed to induce malignant melanoma, whereas intermittent high-dose UV exposure contributes to the occurrence of actinic keratosis as precursor lesions of squamous cell carcinoma as well as basal cell carcinoma. Not only photocarcinogenesis but also the mechanisms of photoaging have recently become apparent. In this respect the use of sunscreens seemed to prove to be more and more important and popular within the last decades. However, there is still inconsistency about the usefulness of sunscreens. Several studies show that inadequate use and incomplete UV spectrum efficacy may compromise protection more than previously expected. The sunscreen market is crowded by numerous products. Inorganic sunscreens such as zinc oxide and titanium oxide have a wide spectral range of activity compared to most of the organic sunscreen products. It is not uncommon for organic sunscreens to cause photocontact allergy, but their cosmetic acceptability is still superior to the one given by inorganic sunscreens. Recently, modern galenic approaches such as micronization and encapsulation allow the development of high-quality inorganic sunscreens. The potential systemic toxicity of organic sunscreens has lately primarily been discussed controversially in public, and several studies show contradictory results. Although a matter of debate, at present the sun protection factor (SPF) is the most reliable information for the consumer as a measure of sunscreen filter efficacy. In this context additional tests have been introduced for the evaluation of not only the protective effect against erythema but also protection against UV-induced immunological and mutational effects. Recently, combinations of UV filters with agents active in DNA repair have been introduced in order to improve photoprotection. This article reviews the efficacy of sunscreens in the prevention of epithelial and nonepithelial skin cancer, the effect on immunosuppression and the value of the SPF as well as new developments on the sunscreen market. Copyright (C) 2005 S. Karger AG, Basel

    The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1

    Get PDF
    Resveratrol is a cancer preventative agent that is found in red wine. Piceatannol is a closely related stilbene that has antileukaemic activity and is also a tyrosine kinase inhibitor. Piceatannol differs from resveratrol by having an additional aromatic hydroxy group. The enzyme CYP1B1 is overexpressed in a wide variety of human tumours and catalyses aromatic hydroxylation reactions. We report here that the cancer preventative agent resveratrol undergoes metabolism by the cytochrome P450 enzyme CYP1B1 to give a metabolite which has been identified as the known antileukaemic agent piceatannol. The metabolite was identified by high performance liquid chromatography analysis using fluorescence detection and the identity of the metabolite was further confirmed by derivatisation followed by gas chromatography–mass spectrometry studies using authentic piceatannol for comparison. This observation provides a novel explanation for the cancer preventative properties of resveratrol. It demonstrates that a natural dietary cancer preventative agent can be converted to a compound with known anticancer activity by an enzyme that is found in human tumours. Importantly this result gives insight into the functional role of CYP1B1 and provides evidence for the concept that CYP1B1 in tumours may be functioning as a growth suppressor enzyme

    Management of chronic obstructive pulmonary disease in India: a systematic review.

    Get PDF
    OBJECTIVES: Chronic diseases are fast becoming the largest health burden in India. Despite this, their management in India has not been well studied. We aimed to systematically review the nature and efficacy of current management strategies for chronic obstructive pulmonary disease (COPD) in India. METHODS: We used database searches (MEDLINE, EMBASE, IndMED, CENTRAL and CINAHL), journal hand-searches, scanning of reference lists and contact with experts to identify studies for systematic review. We did not review management strategies aimed at chronic diseases more generally, nor management of acute exacerbations. Due to the heterogeneity of reviewed studies, meta-analysis was not appropriate. Thus, narrative methods were used. SETTING: India. PARTICIPANTS: All adult populations resident in India. MAIN OUTCOME MEASURES: 1. Trialled interventions and outcomes 2. Extent and efficacy of current management strategies 3. Above outcomes by subgroup. RESULTS: We found information regarding current management - particularly regarding the implementation of national guidelines and primary prevention - to be minimal. This led to difficulty in interpreting studies of management strategies, which were varied and generally of positive effect. Data regarding current management outcomes were very few. CONCLUSIONS: The current understanding of management strategies for COPD in India is limited due to a lack of published data. Determination of the extent of current use of management guidelines, availability and use of treatment, and current primary prevention strategies would be useful. This would also provide evidence on which to interpret existing and future studies of management outcomes and novel interventions

    Grape Seed Proanthocyanidins Inhibit Melanoma Cell Invasiveness by Reduction of PGE2 Synthesis and Reversal of Epithelial-to-Mesenchymal Transition

    Get PDF
    Melanoma is the leading cause of death from skin disease due, in large part, to its propensity to metastasize. We have examined the effect of grape seed proanthocyanidins (GSPs) on melanoma cancer cell migration and the molecular mechanisms underlying these effects using highly metastasis-specific human melanoma cell lines, A375 and Hs294t. Using in vitro cell invasion assays, we observed that treatment of A375 and Hs294t cells with GSPs resulted in a concentration-dependent inhibition of invasion or cell migration of these cells, which was associated with a reduction in the levels of cyclooxygenase (COX)-2 expression and prostaglandin (PG) E2 production. Treatment of cells with celecoxib, a COX-2 inhibitor, or transient transfection of melanoma cells with COX-2 small interfering RNA, also inhibited melanoma cell migration. Treatment of cells with 12-O-tetradecanoylphorbol-13-acetate, an inducer of COX-2, enhanced the phosphorylation of ERK1/2, a protein of mitogen-activated protein kinase family, and subsequently cell migration whereas both GSPs and celecoxib significantly inhibited 12-O-tetradecanoylphorbol-13-acetate -promoted cell migration as well as phosphorylation of ERK1/2. Treatment of cells with UO126, an inhibitor of MEK, also inhibited the migration of melanoma cells. Further, GSPs inhibited the activation of NF-κB/p65, an upstream regulator of COX-2, in melanoma cells, and treatment of cells with caffeic acid phenethyl ester, an inhibitor of NF-κB, also inhibited cell migration. Additionally, inhibition of melanoma cell migration by GSPs was associated with reversal of epithelial-mesenchymal transition process, which resulted in an increase in the levels of epithelial biomarkers (E-cadherin and cytokeratins) while loss of mesenchymal biomarkers (vimentin, fibronectin and N-cadherin) in melanoma cells. Together, these results indicate that GSPs have the ability to inhibit melanoma cell invasion/migration by targeting the endogenous expression of COX-2 and reversing the process of epithelial-to-mesenchymal transition

    The effects of tea extracts on proinflammatory signaling

    Get PDF
    BACKGROUND: Skin toxicity is a common side effect of radiotherapy for solid tumors. Its management can cause treatment gaps and thus can impair cancer treatment. At present, in many countries no standard recommendation for treatment of skin during radiotherapy exists. In this study, we explored the effect of topically-applied tea extracts on the duration of radiation-induced skin toxicity. We investigated the underlying molecular mechanisms and compared effects of tea extracts with the effects of epigallocatechin-gallate, the proposed most-active moiety of green tea. METHODS: Data from 60 patients with cancer of the head and neck or pelvic region topically treated with green or black tea extracts were analyzed retrospectively. Tea extracts were compared for their ability to modulate IL-1β, IL-6, IL-8, TNFα and PGE(2 )release from human monocytes. Effects of tea extracts on 26S proteasome function were assessed. NF-κB activity was monitored by EMSAs. Viability and radiation response of macrophages after exposure to tea extracts was measured by MTT assays. RESULTS: Tea extracts supported the restitution of skin integrity. Tea extracts inhibited proteasome function and suppressed cytokine release. NF-κB activity was altered by tea extracts in a complex, caspase-dependent manner, which differed from the effects of epigallocatechin-gallate. Additionally, both tea extracts, as well as epigallocatechin-gallate, slightly protected macrophages from ionizing radiation CONCLUSION: Tea extracts are an efficient, broadly available treatment option for patients suffering from acute radiation-induced skin toxicity. The molecular mechanisms underlying the beneficial effects are complex, and most likely not exclusively dependent on effects of tea polyphenols such as epigallocatechin-gallate

    Grape Seed Proanthocyanidins Inhibit the Invasiveness of Human HNSCC Cells by Targeting EGFR and Reversing the Epithelial-To-Mesenchymal Transition

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is responsible for approximately 20,000 deaths per year in the United States. Most of the deaths are due to the metastases. To develop more effective strategies for the prevention of metastasis of HNSCC cells, we have determined the effect of grape seed proanthocyanidins (GSPs) on the invasive potential of HNSCC cell and the mechanisms underlying these effects using OSC19 cells as an in vitro model. Using cell invasion assays, we established that treatment of the OSC19 cells with GSPs resulted in a dose-dependent inhibition of cell invasion. EGFR is over-expressed in 90% of HNSCCs and the EGFR inhibitors, erlotinib and gefitinib, are being explored as therapies for this disease. We found that GSPs treatment reduced the levels of expression of EGFR in the OSC19 cells as well as reducing the activation of NF-κB/p65, a downstream target of EGFR, and the expression of NF-κB-responsive proteins. GSPs treatment also reduced the activity of ERK1/2, an upstream regulator of NF-κB and treatment of the cells with caffeic acid phenethyl ester, an inhibitor of NF-κB, inhibited cell invasion. Overexpression of EGFR and high NF-κB activity play a key role in the epithelial-to-mesenchymal transition, which is of critical importance in the processes underlying metastasis, and we found treatment with GSPs enhanced the levels of epithelial (E-cadherin, cytokeratins and desmoglein-2) and reduced the levels of mesenchymal (vimentin, fibronectin, N-cadherin and Slug) biomarkers in the OSC19 cells. These results indicate that GSPs have the ability to inhibit HNSCC cell invasion, and do so by targeting the expression of EGFR and activation of NF-κB as well as inhibiting the epithelial-to-mesenchymal transition
    corecore