66 research outputs found

    Immunolocalization of Proteins in Corals: The V-Type H\u3csup\u3e+\u3c/sup\u3e-ATPase Proton Pump

    Get PDF
    Here we describe the immunolocalization of a membrane-bound proton pump, the V-type H+-ATPase (VHA), in tissues and isolated cells of scleractinian corals. Immunolocalization of coral proteins requires additional steps not required for various model organisms, such as decalcification of the coral skeleton for immunohistochemistry or removal of cells away from the skeleton for immunocytochemistry. The tissue and cell preparation techniques described here can be adapted for localization of other coral proteins, provided the appropriate validation steps have been taken for the primary antibodies and species of coral used. These techniques are important for improving our understanding of coral cell physiology

    Microbial Community Structure Affects Marine Dissolved Organic Matter Composition

    Get PDF
    Marine microbes are critical players in the global carbon cycle, affecting both the reduction of inorganic carbon and the remineralization of reduced organic compounds back to carbon dioxide. Members of microbial consortia all depend on marine dissolved organic matter (DOM) and in turn, affect the molecules present in this heterogeneous pool. Our understanding of DOM produced by marine microbes is biased toward single species laboratory cultures or simplified field incubations, which exclude large phototrophs and protozoan grazers. Here we explore the interdependence of DOM composition and bacterial diversity in two mixed microbial consortia from coastal seawater: a whole water community and

    Symbiont psbA and ORF host sequences generated as part of a study of pCO2 variability on the reef-building coral Pocillopora damicornis conducted at Heron Island Research Station, Heron Island, southern Great Barrier Reef in 2021

    Get PDF
    Dataset: Sequences for symbiont psbA and ORF host sequencesThis dataset contains symbiont psbA and ORF host sequences and accession information at the National Center for Biotechnology Information (NCBI)'s Genbank database. These data were collected as part of a study of pCO2 variability on the reef-building coral Pocillopora damicornis conducted at Heron Island Research Station, Heron Island, southern Great Barrier Reef in 2021 (Brown et al., 2022). Abstract for all data from the study (Brown et al., 2022) including this dataset: Ocean acidification is a growing threat to coral growth and the accretion of coral reef ecosystems. Corals inhabiting environments that already endure extreme diel pCO2 fluctuations, however, may represent acidification resilient populations capable of persisting on future reefs. Here, we examined the impact of pCO2 variability on the reef-building coral Pocillopora damicornis originating from reefs with contrasting environmental histories (variable reef flat vs. stable reef slope) following reciprocal exposure to stable (218 ± 9) or variable (911 ± 31) diel pCO2 amplitude (μtam) in aquaria over eight weeks. This study measured: growth (net calcification, extension, CaCO3 density) and physiology (dark respiration, light-enhanced dark respiration, host soluble protein, mycosporine-like amino acids, net photosynthesis, photosynthetic efficiency, endosymbiont density, chlorophyll a concentration, intracellular pH) of P. damicornis across treatment and origin. See all datasets related to this publication (https://www.bco-dmo.org/related-resource/885684). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/885679NSF Division of Ocean Sciences (NSF OCE) OCE-192374

    Established and Potential Physiological Roles of Bicarbonate-Sensing Soluble Adenylyl Cyclase (sAC) in Aquatic Animals

    Get PDF
    Soluble adenylyl cyclase (sAC) is a recently recognized source of the signaling molecule cyclic AMP (cAMP) that is genetically and biochemically distinct from the classic G-protein-regulated transmembrane adenylyl cyclases (tmACs). Mammalian sAC is distributed throughout the cytoplasm and it may be present in the nucleus and inside mitochondria. sAC activity is directly stimulated by HCO3-, and sAC has been confirmed to be a HCO3- sensor in a variety of mammalian cell types. In addition, sAC can functionally associate with carbonic anhydrases to act as a de facto sensor of pH and CO2. The two catalytic domains of sAC are related to HCO3--regilated adenylyl cyclases from cyanobacteria, suggesting the cAMP pathway is an evolutionarily conserved mechanism for sensing CO2 levels and/or acid/base conditions. Reports of sAC in aquatic animals are still limited but are rapidly accumulating. In shark gills, sAC senses blood alkalosis and triggers compensatory H+ absorption. And in sea urchin sperm, sAC may participate in the initiation of flagellar movement and in the acrosome reaction. Bioinformatics and RT-PCR results reveal that sAC orthologs are present in most animal phyla. This review summarizes the current knowledge on the physiological roles of sAC in aquatic animals and suggests additional functions in which sAC may be involved

    Coral Host Cells Acidify Symbiotic Algal Microenvironment to Promote Photosynthesis

    Get PDF
    Symbiotic dinoflagellate algae residing inside coral tissues supply the host with the majority of their energy requirements through the translocation of photosynthetically fixed carbon. The algae, in turn, rely on the host for the supply of inorganic carbon. Carbon must be concentrated as CO2 in order for photosynthesis to proceed, and here we show that the coral host plays an active role in this process. The host-derived symbiosome membrane surrounding the algae abundantly expresses vacuolar H+-ATPase (VHA), which acidifies the symbiosome space down to pH ∼4. Inhibition of VHA results in a significant decrease in average H+ activity in the symbiosome of up to 75% and a significant reduction in O2 production rate, a measure of photosynthetic activity. These results suggest that host VHA is part of a previously unidentified carbon concentrating mechanism for algal photosynthesis and provide mechanistic evidence that coral host cells can actively modulate the physiology of their symbionts

    Stable and Sporadic Symbiotic Communities of Coral and Algal Holobionts

    Get PDF
    Coral and algal holobionts are assemblages of macroorganisms and microorganisms, including viruses, Bacteria, Archaea, protists and fungi. Despite a decade of research, it remains unclear whether these associations are spatial-temporally stable of species-specific. We hypothesized that conflicting interpretations of the data arise from high noise associated with sporadic microbial symbionts overwhelming signatures of stable holobiont members. To test this hypothesis, the bacterial communities associated with three coral species (Acropora rosaria, Acropora hyacinthus and Porites lutea) and two algal guilds (crustose coralline algae and turf algae) from 131 samples were analyzed using a novel statistical approach termed the Abundance-Ubiquity (AU) test. The AU test determines whether a given bacterial species would be present given additional sampling effort (that is, stable) versus those species that are sporadically associated with a sample. Using the AU test, we show that coral and algal holobionts have a high-diversity group of stable symbionts. Stable symbionts are not exclusive to one species of coral or algae. No single bacterial species was ubiquitously associated with one host, showing that there is not strict heredity of the microbiome. In addition to the stable symbionts, there was a low-diversity community of sporadice symbionts whose abundance varied widely across individual holobionts of the same species. Identification of these two symbiont communities supports the holobiont model and calls into question the hologenome theory of evolution

    Hyperspectral and Physiological Analyses of Coral-Algal Interactions

    Get PDF
    Space limitation leads to competition between benthic, sessile organisms on coral reefs. As a primary example, reef-building corals are in direct contact with each other and many different species and functional groups of algae. Here we characterize interactions between three coral genera and three algal functional groups using a combination of hyperspectral imaging and oxygen microprofiling. We also performed in situ interaction transects to quantify the relative occurrence of these interaction on coral reefs. These studies were conducted in the Southern Line Islands, home to some of the most remote and near-pristine reefs in the world. Our goal was to determine if different types of coral-coral and coral-algal interactions were characterized by unique fine-scale physiological signatures. This is the first report using hyperspectral imaging for characterization of marine benthic organisms at the micron scale and proved to be a valuable tool for discriminating among different photosynthetic organisms. Consistent patterns emerged in physiology across different types of competitive interactions. In cases where corals were in direct contact with turf or macroalgae, there was a zone of hypoxia and altered pigmentation on the coral. In contrast, interaction zones between corals and crustose coralline algae (CCA) were not hypoxic and the coral tissue was consistent across the colony. Our results suggest that at least two main characteristic coral interaction phenotypes exist: 1) hypoxia and coral tissue disruption, seen with interactions between corals and some species of CCA. Hyperspectral imaging in combination with oxygen profiling provided useful information on competitive interactions between benthic reef organisms, and demonstrated that some turf and fleshy macroalgae can be constant source of stress for corals, while CCA are not

    Natural History of Coral-Algae Competition across a Gradient of Human Activity in the Line Islands

    Get PDF
    Competition between corals and benthic algae is prevalent on coral reefs worldwide and has the potential to influence the structure of the reef benthos. Human activities may influence the outcome of these interactions by favoring algae to become the superior competitor, and this type of change in competitive dynamics is a potential mechanism driving coral-algal phase shifts. Here we surveyed the types and outcomes of coral-algal interactions varied across reefs on the different islands. On reefs surrounding inhabited islands, however, turf algae were generally the superior competitors. When corals were broken down by size class, we found that the smallest and the largest coral colonies were the best competitors against algae; the former successfully fought off algae while being completely surrounded, and the latter generally avoided algal overgrowth by growing up above the benthos. Our data suggest that human disruption of the reef ecosystem may lead to a building pattern of competitive disadvantage for corals against encroaching algae, potentially initiating a transition towards algal dominance

    High Adenylyl Cyclase Activity and \u3cem\u3eIn Vivo\u3c/em\u3e cAMP Fluctuations in Corals Suggest Central Physiological Role

    Get PDF
    Corals are an ecologically and evolutionarily significant group, providing the framework for coral reef biodiversity while representing one of the most basal of metazoan phyla. However, little is known about fundamental signaling pathways in corals. Here we investigate the dynamics of cAMP, a conserved signaling molecule that can regulate virtually every physiological process. Bioinformatics revealed corals have both transmembrane and soluble adenylyl cyclases (AC). Endogenous cAMP levels in live corals followed a potential diel cycle, as they were higher during the day compared to the middle of the night. Coral homogenates exhibited some of the highest cAMP production rates ever to be recorded in any organism; this activity was inhibited by calcium ions and stimulated by bicarbonate. In contrast, zooxanthellae or mucus had \u3e1000-fold lower AC activity. These results suggest that cAMP is an important regulator of coral physiology, especially in response to light, acid/base disturbances and inorganic carbon levels

    Evolution of TNF-Induced Apoptosis Reveals 550 My of Functional Conservation

    Get PDF
    The Precambrian explosion led to the rapid appearance of most major animal phyla alive today. It has been argued that the complexity of life has steadily increased since that event. Here we challenge this hypothesis through the characterization of apoptosis in reef-building corals, representatives of some of the earliest animals. Bioinformatic analysis reveals that all of the major components of the death receptor pathway are present in coral with high-predicted structural conservation with Homo sapiens. The TNF receptor-ligand superfamilies (TNFRSF/TNFSF) are central mediators of the death receptor pathway, and the predicted proteome of Acropora digitifera contains more putative coral TNFRSF members than any organism described thus far, including humans. This high abundance of TNFRSF members, as well as the predicted structural conservation of other death receptor signaling proteins, led us to wonder what would happen if corals were exposed to a member of the human TNFSF (HuTNFα). HuTNFα was found to bind directly to coral cells, increase caspase activity, cause apoptotic blebbing and cell death, and finally induce coral bleaching. Next, immortalized human T cells (Jurkats) expressing a functional death receptor pathway (WT) and a corresponding Fas-associated death domain protein (FADD) KO cell line were exposed to a coral TNFSF member (AdTNF1) identified and purified here. AdTNF1 treatment resulted in significantly higher cell death (P \u3c 0.0001) in WT Jurkats compared with the corresponding FADD KO, demonstrating that coral AdTNF1 activates the H. sapiens death receptor pathway. Taken together, these data show remarkable conservation of the TNF-induced apoptotic response representing 550 My of functional conservation
    • …
    corecore