19 research outputs found

    FKIT: OFFICIAL OPENING OF THE LABORATORY FOR PETROLEUM AND PETROCHEMICAL PROCESS ENGINEERING

    Get PDF
    Laboratorij za naftno-petrokemijsko procesno inženjerstvo ustrojen je na Zavodu za tehnologiju nafte i petrokemiju Fakulteta kemijskog inženjerstva i tehnologije te je svečano otvoren u okviru znanstvenog kolokvija AMACIZ-a dana 04. srpnja 2011. godine. Svrha mu je omogućiti provođenje istraživanja i razvoja procesa obrade i prerade naftnih frakcija, te na taj način studentima omogućiti neposredno i praktično obučavanje za rad u naftnoj industriji. U laboratoriju se provode istraživanja i razvoj separacijskih i katalitičkih procesa uz odgovarajuću istraživačku i analitičku opremu. Separacijski procesi koji se istražuju su adsorpcija i kapljevinska ekstrakcija kao procesi za desulfurizaciju s ciljem dobivanja goriva poboljšanih svojstava koja će zadovoljavati stroge propise o sadržaju sumpora u gorivima. Laboratorij je opremljen s četiri uređaja za ispitivanje ovih procesa u šaržnim i kolonskim adsorberima, odnosno ekstraktorima. Katalitički konverzijski procesi istražuju se na uređaju koji je izveden tako da omogućuje provođenje reakcija u čvrstom nepokretnom sloju katalizatora u prisutnosti vodika ili nekog drugog plina kod temperatura od 25 do 400 °C i pri tlakovima od 1 do 40 bar te protoku sirovine od 0,01 do 10,00 cm3 min-1 i protoku vodika do 2000 cm3 min-1. Laboratorij je opremljen s tri uređaja za provođenje kemijske analize uzoraka i to plinskim kromatografom s plameno ionizacijskim detektorom i ZB-1 kapilarnom kolonom za analizu ugljikovodika s 1 do 12 C atoma, valno disperzivnim rendgenskim fluorescencijskim spektrometrom za elementarnu analizu kapljevitih organskih otopina te UV-VIS spektrometrom.Laboratory for Petroleum and Petrochemical Process Engineering was established as a part of the Petroleum and Petrochemical Department at the Faculty of Chemical engineering and Technology and it was officially opened on July 4, 2011, within the AMACIZ scientific colloquium. The Laboratory was founded with the goal of enabling the research and development of processes treating and refining petroleum fractions and in this way create new opportunities for students for direct and practical training for the work in the petroleum refining industry. Laboratory is used for conducting research and development of separation and catalytic processes and it includes adequate experimental and analytical equipment. Separation processes that are being researched are adsorption and extraction as desulfurization processes for attaining fuels with improved properties in regard to the stringent sulfur content regulations. Laboratory is equipped with four apparatuses for conducting adsorption and extraction experiments in batch and column adsrbers and extractors, respectively. Catalytic conversion experiments are being conducted in an apparatus with fixed bed column reactor and in the presence of hydrogen or some other gas. The experiments can be carried out at temperatures between 25 and 400 °C and pressures between 1 and 40 bars with flow rates for the feed between 0,01 do 10,00 cm3 min-1 and for the hydrogen up to 2000 cm3 min-1. Laboratory analytical equipment comprises three devices including a gas chromatgraph with flame ionization detector and ZB-1 capillary column for the analysis of hydrocarbons with 1 to 12 C atoms, a wave dispersive x-ray fluorescent spectrometer for elementary analysis of organic liquids and a UV-VIS spectrometer

    FKIT: OFFICIAL OPENING OF THE LABORATORY FOR PETROLEUM AND PETROCHEMICAL PROCESS ENGINEERING

    Get PDF
    Laboratorij za naftno-petrokemijsko procesno inženjerstvo ustrojen je na Zavodu za tehnologiju nafte i petrokemiju Fakulteta kemijskog inženjerstva i tehnologije te je svečano otvoren u okviru znanstvenog kolokvija AMACIZ-a dana 04. srpnja 2011. godine. Svrha mu je omogućiti provođenje istraživanja i razvoja procesa obrade i prerade naftnih frakcija, te na taj način studentima omogućiti neposredno i praktično obučavanje za rad u naftnoj industriji. U laboratoriju se provode istraživanja i razvoj separacijskih i katalitičkih procesa uz odgovarajuću istraživačku i analitičku opremu. Separacijski procesi koji se istražuju su adsorpcija i kapljevinska ekstrakcija kao procesi za desulfurizaciju s ciljem dobivanja goriva poboljšanih svojstava koja će zadovoljavati stroge propise o sadržaju sumpora u gorivima. Laboratorij je opremljen s četiri uređaja za ispitivanje ovih procesa u šaržnim i kolonskim adsorberima, odnosno ekstraktorima. Katalitički konverzijski procesi istražuju se na uređaju koji je izveden tako da omogućuje provođenje reakcija u čvrstom nepokretnom sloju katalizatora u prisutnosti vodika ili nekog drugog plina kod temperatura od 25 do 400 °C i pri tlakovima od 1 do 40 bar te protoku sirovine od 0,01 do 10,00 cm3 min-1 i protoku vodika do 2000 cm3 min-1. Laboratorij je opremljen s tri uređaja za provođenje kemijske analize uzoraka i to plinskim kromatografom s plameno ionizacijskim detektorom i ZB-1 kapilarnom kolonom za analizu ugljikovodika s 1 do 12 C atoma, valno disperzivnim rendgenskim fluorescencijskim spektrometrom za elementarnu analizu kapljevitih organskih otopina te UV-VIS spektrometrom.Laboratory for Petroleum and Petrochemical Process Engineering was established as a part of the Petroleum and Petrochemical Department at the Faculty of Chemical engineering and Technology and it was officially opened on July 4, 2011, within the AMACIZ scientific colloquium. The Laboratory was founded with the goal of enabling the research and development of processes treating and refining petroleum fractions and in this way create new opportunities for students for direct and practical training for the work in the petroleum refining industry. Laboratory is used for conducting research and development of separation and catalytic processes and it includes adequate experimental and analytical equipment. Separation processes that are being researched are adsorption and extraction as desulfurization processes for attaining fuels with improved properties in regard to the stringent sulfur content regulations. Laboratory is equipped with four apparatuses for conducting adsorption and extraction experiments in batch and column adsrbers and extractors, respectively. Catalytic conversion experiments are being conducted in an apparatus with fixed bed column reactor and in the presence of hydrogen or some other gas. The experiments can be carried out at temperatures between 25 and 400 °C and pressures between 1 and 40 bars with flow rates for the feed between 0,01 do 10,00 cm3 min-1 and for the hydrogen up to 2000 cm3 min-1. Laboratory analytical equipment comprises three devices including a gas chromatgraph with flame ionization detector and ZB-1 capillary column for the analysis of hydrocarbons with 1 to 12 C atoms, a wave dispersive x-ray fluorescent spectrometer for elementary analysis of organic liquids and a UV-VIS spectrometer

    THE OPPORTUNITIES FOR REFINERY PRODUCTION OF ENVIRONMENTALLY FRIENDLY HYDROCARBON FUELS - HYDROCRACKING, ALKYLATION AND ISOMERIZATION

    Get PDF
    Naftna industrija se suočava sa sve većim pritiskom i zakonodavne vlasti i javnosti, da unaprijedi i poboljša rafinerijske procese prerade i obrade naftnih frakcija. Temeljni cilj razvoja je smanjenje negativnih učinaka na okoliš uz ekonomsku održivost cijelog procesa. Ekološki aspekt se može podijeliti u dva glavna dijela: primarni koji uključuje smanjenje štetnih emisija s rafinerijskih postrojenja i sekundarni koji uključuje proizvodnju ekološki prihvatljivih ugljikovodičnih goriva čija se poboljšana svojstva očituju u smanjenim štetnim emisijama iz motora s unutarnjim izgaranjem. Ekološki prihvatljiva ugljikovodična goriva, tzv. čista goriva mogu se dobiti procesima prerade od kojih su osnovni hidrokrekiranje, izomerizacija i alkilacija. Napretkom u istraživanjima i razvoju novih tehnologija i katalizatora, važnost i vrijednost procesa hidrokrekiranja, izomerizacije i alkilacije znatno je porasla jer nove tehnologije predstavljaju manji ekološki rizik te imaju sposobnost proizvodnje goriva s visokim cetanskim/oktanskim brojem, a s vrlo niskim sadržajem ili bez aromatskih i sumporovih spojeva, ovisno o sastavu sirovine. Proces alkilacije se istražuje i kao mogući alternativni proces obrade za smanjenje sadržaja sumpora u benzinima pri čemu ne dolazi do pada oktanskog broja produkta.Oil industry is faced with increasing pressure, from government agencies and public alike, to improve refinery processes. The main objective of development is to reduce negative impacts on the environment while maintaining economic viability of the entire process. The environmental aspect can be divided into two main parts including the primary task to reduce the plant emissions and secondary task to at the same time produce environmentally friendly hydrocarbon fuels whose improved properties are reflected in reduced emissions from internal combustion engines. The basic refinery processes that are able to produce environmentally friendly hydrocarbon fuels or the so called clean fuels include hydrocracking, alkylation and isomerization. Advances in research and development of new technologies and catalysts increased the value of the aforementioned processes because the environmental risks are reduced and the fuels they produce have high octane/cetane numbers and low or now sulfur and aromatic content depending on the type of feedstock. The alkylation is also researched as possible alternative treatment process for lowering the total sulfur content in gasoline fuels during which there would be no octane loss in the product

    MODELLING OF THE ISOMERIZATION PROCESS FOR THE PURPOSE OF ADVANCING MOTOR GASOLINE QUALITY

    Get PDF
    Sažetak U radu je postavljen matematički model odabranog modela izomerizacije. Pri postavljanju modela proces je istražen sa stajališta reakcijskog mehanizma, kinetike reakcija izomerizacije, te parametara kemijske ravnoteže. Simulacijski model reaktora izveden je prema postavljenim materijalnim bilancama, a modelom su opisani i procesi izmjene topline, te procesi izmjene tvari postupcima separacije. Postavljeni simulacijski model omogućio je istraživanje i proučavanje optimalnih radnih uvjeta procesa simuliranjem, te je predloženo unapređenje procesa sa stajališta povećanja prinosa visokooktanskog produkta procesa izomerizacije, kao i povećanja oktanskog broja proizvoda. Rezultati dobiveni simuliranjem procesa unaprijeđenog dodatkom kolone za deizopentanizaciju pokazali su povećanje iscrpka izomerizata za čak 42% u usporedbi s procesom bez unapređenja, dok je izvedba procesa s molekulskim sitima rezultirala značajnim povećanjem istraživačkog oktanskog broja proizvoda od 9 jedinica. Rezultati simuliranja procesa bez unapređenja i procesa s kolonom deizopentanizera pokazali su vrlo dobro slaganje s eksperimentalnim podacima industrijskog procesa.Abstract The paper defines a mathematical model of the chosen isomerization model. While setting the model, the process was explored from the viewpoint of reaction mechanism, isomerization reactions kinetics, and chemical balance parameters. The reactor simulation model has been elaborated according to the set material balances, while the model describes also the heat exchange processes, as well as those of substance exchange using separation procedures. The set simulation model has enabled research and study of optimal operating process conditions using simulation, and process advancement has been suggested from the viewpoint of increasing the yield of the high octane isomerization process product, as well as the yield of the product octane number. The results obtained through the simulation of the process advanced by the addition of the deisopentanizer column have shown an increased isomerate yield by as much as 42% compared with the process without advancement, while the process implementation with molecular sieves has resulted in a considerable increase of the product research octane number of 9 units. The results of process simulation without advancement and those of the process with deisopentanizer column have shown very good match with the experimental data of the industrial process

    KINETIC, EQUILIBRIUM AND STATISTICAL ANALYSIS OF DIESEL FUEL ADSORPTIVE DESULFURIZATION

    Get PDF
    Odsumporavanje ugljikovodičnih goriva u posljednje vrijeme jedan je od najvažnijih procesa u rafinerijskoj preradi nafte. Sve stroži propisi o zaštiti okoliša zahtijevaju od proizvođača motornih goriva da poboljšaju postojeće procese i razmišljaju o alternativnim načinima uklanjanja sumpora iz motornih goriva. Obradom dizelskih goriva primjenjujući trenutačno dostupne tehnologije teško se postiže sadržaj manji od 10 mg kg-1 sumpora, jer sumporovi spojevi koji zaostanu u frakcijama s 500 mg kg-1 sumpora najčešće su u obliku tzv. refrakcijskih spojeva koje većinom čine alkil-dibenzotiofeni s jednom ili dvije alkilne skupine na 4. i/ili 6. mjestu te one značajno inhibiraju konvencionalne procese hidrodesulfurizacije. Adsorpcija je proces kojim se može provesti odsumporavanje dizelskog goriva a temelji se na principu selektivnog razdvajanja manje od 1 % m/m ulazne količine goriva pri čemu se ostatku mase goriva, odnosno 99 % m/m goriva koji ne sadrži sumpor, omogućuje nesmetan prolazak kroz sustav. Proces adsorpcijskog odsumporavanja proveden je u laboratorijskoj aparaturi za šaržnu adsorpciju uz korištenje aktivnog ugljena i aktivnog aluminijevog oksida kao adsorbensa. Provedena je kinetička i ravnotežna karakterizacija procesa adsorpcije. Rezultati provedenih uvodnih eksperimentalnih ispitivanja pokazali su da aktivni ugljen ima znatno bolje karakteristike s obzirom na smanjenje sadržaja sumpora kao i adsorpcijski kapacitet. Statističkom obradom podataka dobivenih provedbom 23 faktorskog plana pokusa utvrđen je kvantitativan utjecaj vremena, početnog sadržaja sumpora i mase aktivnog ugljena te njihovih međudjelovanja na mjerene veličine, odnosno sadržaj sumpora u dizelskom gorivu i adsorpcijski kapacitet.Desulfurization of hydrocarbon fuels has lately become one of the most important processes in petroleum refining. Increasingly stringent environmental protection regulations mean that motor fuel producers must improve their existing technology and to start considering alternative ways of removing sulfur from fuels. It is very difficult for currently available technology to treat diesel fuel and achieve sulfur content of less than 10 mg kg-1. The compounds that remain in fractions with 500 mg kg-1 sulfur, depending on the origin of the feed, are usually in the form of refractory compounds which are mainly alkyl-dibenzotiophenes with one or two alkyl groups on 4- and/or 6-positions. These compounds severely inhibit conventional hydrodesulfurization processes. Adsorption is a process that can be applied for diesel fuel desulfurization. The idea is to selectively separate less than 1 wt.% of fuel mass by selective adsorption for removing sulfur, and leave the 99 wt.% of non-sulfur-containing fuel mass untouched. Adsorptive desulfurization was carried out in laboratory apparatus designed for batch adsorption applying activated carbon and aluminium oxide. Kinetic and equilibrium analysis of the adsorption process was done. The results of these experiments showed that activated carbon had significantly better performance regarding the lowering of sulfur content and adsorption capacity. Statistical analysis of the data obtained from the experiments, carried out according to 23 factorial design, was used to determine the influence of time, initial sulfur concentration, activated carbon mass and their interactional effects on sulfur content and adsorption capacity

    THE EFFECT OF PROCESS VARIABLES ON THE EFFICIENCY OF GAS OIL HYDRODESULFURIZATION

    Get PDF
    Sažetak U radu je istražen utjecaj temperature i omjera vodik/ugljikovodici (H2/CH) u procesu hidrodesulfurizacije vakuum plinskog ulja. Ispitivanja su provedena u eksperimentalnom reaktoru ”Andreas Hofer”, u temperaturnom području od 320 do 380°C, uz promjenjivi omjer H2/CH od 100 do 300 te uz stalnu prostornu brzinu od 1h-1 i tlak od 40 bara. Pokazano je da povećanjem temperature i omjera H2/CH raste postotak uklonjenog sumpora iz vakuum plinskog ulja. Strukturno-grupnom analizom utvrđeno je povećanje udjela parafinskog ugljika (%CP) u čitavom temperaturnom području. Nakon početnog smanjenja udjela aromatskog ugljika (%CA) u odnosu na sirovinu pri nižim temperaturama procesa opaženo je njegovo povećanje s porastom temperature, koje je osobito izraženo pri najvećoj oštrini procesnih uvjeta. Također su utvrđena smanjenja vrijednosti fizikalnih značajki produkata (gustoća, viskoznost, molekulska masa) s povećanjem temperature i omjera H2/CH u ispitanom području njihovih vrijednosti.Abstract The paper investigates the effect of temperature and hydrogen/hydrocarbons (H2/CH) ratio in the hydrodesulfurization process of vacuum gas oil. The tests have been performed at the experimental reactor ”Andreas Hofer”, within the temperature range from 320 to 380°C, with a variable H2/CH ratio from 100 to 300; with a constant space velocity of 1h-1 and a 40 bar pressure. It has been shown that the increase of temperature and H2/CH ratio is followed by the increase of sulphur removed from the vacuum gas oil. The structural-group analysis has shown the increase of the paraffinic carbon share (%CP) in the entire temperature range. After the initial reduction in the aromatic carbon share (%CA) with regard to the feed, at lower process temperatures, we have noticed its increase with the increase of temperature, particularly pronounced at the highest severity of process conditions. Also established have been reductions in the value of the products’ physical properties (density, viscosity, molecular mass), with the increase of temperature and H2/CH ratio within the tested area of their values

    MODELLING OF THE ISOMERIZATION PROCESS FOR THE PURPOSE OF ADVANCING MOTOR GASOLINE QUALITY

    Get PDF
    Sažetak U radu je postavljen matematički model odabranog modela izomerizacije. Pri postavljanju modela proces je istražen sa stajališta reakcijskog mehanizma, kinetike reakcija izomerizacije, te parametara kemijske ravnoteže. Simulacijski model reaktora izveden je prema postavljenim materijalnim bilancama, a modelom su opisani i procesi izmjene topline, te procesi izmjene tvari postupcima separacije. Postavljeni simulacijski model omogućio je istraživanje i proučavanje optimalnih radnih uvjeta procesa simuliranjem, te je predloženo unapređenje procesa sa stajališta povećanja prinosa visokooktanskog produkta procesa izomerizacije, kao i povećanja oktanskog broja proizvoda. Rezultati dobiveni simuliranjem procesa unaprijeđenog dodatkom kolone za deizopentanizaciju pokazali su povećanje iscrpka izomerizata za čak 42% u usporedbi s procesom bez unapređenja, dok je izvedba procesa s molekulskim sitima rezultirala značajnim povećanjem istraživačkog oktanskog broja proizvoda od 9 jedinica. Rezultati simuliranja procesa bez unapređenja i procesa s kolonom deizopentanizera pokazali su vrlo dobro slaganje s eksperimentalnim podacima industrijskog procesa.Abstract The paper defines a mathematical model of the chosen isomerization model. While setting the model, the process was explored from the viewpoint of reaction mechanism, isomerization reactions kinetics, and chemical balance parameters. The reactor simulation model has been elaborated according to the set material balances, while the model describes also the heat exchange processes, as well as those of substance exchange using separation procedures. The set simulation model has enabled research and study of optimal operating process conditions using simulation, and process advancement has been suggested from the viewpoint of increasing the yield of the high octane isomerization process product, as well as the yield of the product octane number. The results obtained through the simulation of the process advanced by the addition of the deisopentanizer column have shown an increased isomerate yield by as much as 42% compared with the process without advancement, while the process implementation with molecular sieves has resulted in a considerable increase of the product research octane number of 9 units. The results of process simulation without advancement and those of the process with deisopentanizer column have shown very good match with the experimental data of the industrial process

    THE EFFECT OF PROCESS VARIABLES ON THE EFFICIENCY OF GAS OIL HYDRODESULFURIZATION

    Get PDF
    Sažetak U radu je istražen utjecaj temperature i omjera vodik/ugljikovodici (H2/CH) u procesu hidrodesulfurizacije vakuum plinskog ulja. Ispitivanja su provedena u eksperimentalnom reaktoru ”Andreas Hofer”, u temperaturnom području od 320 do 380°C, uz promjenjivi omjer H2/CH od 100 do 300 te uz stalnu prostornu brzinu od 1h-1 i tlak od 40 bara. Pokazano je da povećanjem temperature i omjera H2/CH raste postotak uklonjenog sumpora iz vakuum plinskog ulja. Strukturno-grupnom analizom utvrđeno je povećanje udjela parafinskog ugljika (%CP) u čitavom temperaturnom području. Nakon početnog smanjenja udjela aromatskog ugljika (%CA) u odnosu na sirovinu pri nižim temperaturama procesa opaženo je njegovo povećanje s porastom temperature, koje je osobito izraženo pri najvećoj oštrini procesnih uvjeta. Također su utvrđena smanjenja vrijednosti fizikalnih značajki produkata (gustoća, viskoznost, molekulska masa) s povećanjem temperature i omjera H2/CH u ispitanom području njihovih vrijednosti.Abstract The paper investigates the effect of temperature and hydrogen/hydrocarbons (H2/CH) ratio in the hydrodesulfurization process of vacuum gas oil. The tests have been performed at the experimental reactor ”Andreas Hofer”, within the temperature range from 320 to 380°C, with a variable H2/CH ratio from 100 to 300; with a constant space velocity of 1h-1 and a 40 bar pressure. It has been shown that the increase of temperature and H2/CH ratio is followed by the increase of sulphur removed from the vacuum gas oil. The structural-group analysis has shown the increase of the paraffinic carbon share (%CP) in the entire temperature range. After the initial reduction in the aromatic carbon share (%CA) with regard to the feed, at lower process temperatures, we have noticed its increase with the increase of temperature, particularly pronounced at the highest severity of process conditions. Also established have been reductions in the value of the products’ physical properties (density, viscosity, molecular mass), with the increase of temperature and H2/CH ratio within the tested area of their values

    OXIDATIVE DESULFURIZATION OF MODEL DIESEL FUEL WITH HYDROGEN PEROXIDE

    Get PDF
    Poboljšanje kvalitete motornih goriva s obzirom na ekološke karakteristike kontinuirano je usmjereno prema smanjenju sadržaja sumpora, što je moguće postići različitim postupcima desulfurizacije. U tom smislu, razvijen je proces oksidacijske desulfurizacije kao alternativa ili dodatak postojećem procesu hidrodesulfurizacije (HDS). U ovom radu proučavan je utjecaj temperature reakcije, brzine miješanja i vremena oksidacije na proces oksidacijske desulfurizacije (ODS) modelnog dizelskog goriva u sustavu vodikov peroksid / octena kiselina. Ispitivanja su provedena u kotlastom reaktoru volumena 70 ml, u temperaturnom rasponu 20-90 °C, pri brzini miješanja od 300-700 o/min i vremenu reakcije do 150 minuta. Dobiveni rezultati ukazuju na povećanje stvaranja sulfona pri višim temperaturama i većoj brzini miješanja. Nakon procesa oksidacije provedena je ekstrakcija rafinantne faze dimetil-formamidom, te su istraženi utjecaji procesnih parametara; omjera otapalo/rafinat, brzine vrtnje miješala i temperature. Analiza sumporovih spojeva nakon procesa oksidacijske desulfurizacije provedena je metodom plinske kromatografije.The improving of motor fuels quality with regard to ecological standards is directed continuously toward lower sulfur content, which can be achieved by different desulfurization methods. The oxidative desulfurization process is developed as an alternative or addition to the hydrodesulfurization processes. In this paper the effects of reaction temperature, rate of stirring and time of oxidation of model diesel fuel with hydrogen peroxide/acetic acid in 70 ml batch reactor were investigated. The temperature range was 20-90 °C, rate of stirring 300-700 rpm, and reaction time up to 150 minutes. The results indicate a rise in the yield of sulfones at higher temperatures and higher rate of stirring. Extraction with N,N-dimethylformamide was conducted after the process of oxidation and the effect of solvent/oil ratio, rate of stirring and temperature was investigated. Gas chromatography method was used for identification of sulfur containing compounds formed during the oxidative desulfurization process

    OXIDATIVE DESULFURIZATION OF MODEL DIESEL FUEL WITH HYDROGEN PEROXIDE

    Get PDF
    Poboljšanje kvalitete motornih goriva s obzirom na ekološke karakteristike kontinuirano je usmjereno prema smanjenju sadržaja sumpora, što je moguće postići različitim postupcima desulfurizacije. U tom smislu, razvijen je proces oksidacijske desulfurizacije kao alternativa ili dodatak postojećem procesu hidrodesulfurizacije (HDS). U ovom radu proučavan je utjecaj temperature reakcije, brzine miješanja i vremena oksidacije na proces oksidacijske desulfurizacije (ODS) modelnog dizelskog goriva u sustavu vodikov peroksid / octena kiselina. Ispitivanja su provedena u kotlastom reaktoru volumena 70 ml, u temperaturnom rasponu 20-90 °C, pri brzini miješanja od 300-700 o/min i vremenu reakcije do 150 minuta. Dobiveni rezultati ukazuju na povećanje stvaranja sulfona pri višim temperaturama i većoj brzini miješanja. Nakon procesa oksidacije provedena je ekstrakcija rafinantne faze dimetil-formamidom, te su istraženi utjecaji procesnih parametara; omjera otapalo/rafinat, brzine vrtnje miješala i temperature. Analiza sumporovih spojeva nakon procesa oksidacijske desulfurizacije provedena je metodom plinske kromatografije.The improving of motor fuels quality with regard to ecological standards is directed continuously toward lower sulfur content, which can be achieved by different desulfurization methods. The oxidative desulfurization process is developed as an alternative or addition to the hydrodesulfurization processes. In this paper the effects of reaction temperature, rate of stirring and time of oxidation of model diesel fuel with hydrogen peroxide/acetic acid in 70 ml batch reactor were investigated. The temperature range was 20-90 °C, rate of stirring 300-700 rpm, and reaction time up to 150 minutes. The results indicate a rise in the yield of sulfones at higher temperatures and higher rate of stirring. Extraction with N,N-dimethylformamide was conducted after the process of oxidation and the effect of solvent/oil ratio, rate of stirring and temperature was investigated. Gas chromatography method was used for identification of sulfur containing compounds formed during the oxidative desulfurization process
    corecore