12 research outputs found

    Electron Beam Melting and Refining of Metals: Computational Modeling and Optimization

    No full text
    Computational modeling offers an opportunity for a better understanding and investigation of thermal transfer mechanisms. It can be used for the optimization of the electron beam melting process and for obtaining new materials with improved characteristics that have many applications in the power industry, medicine, instrument engineering, electronics, etc. A time-dependent 3D axis-symmetrical heat model for simulation of thermal transfer in metal ingots solidified in a water-cooled crucible at electron beam melting and refining (EBMR) is developed. The model predicts the change in the temperature field in the casting ingot during the interaction of the beam with the material. A modified Pismen-Rekford numerical scheme to discretize the analytical model is developed. These equation systems, describing the thermal processes and main characteristics of the developed numerical method, are presented. In order to optimize the technological regimes, different criteria for better refinement and obtaining dendrite crystal structures are proposed. Analytical problems of mathematical optimization are formulated, discretized and heuristically solved by cluster methods. Using important for the practice simulation results, suggestions can be made for EBMR technology optimization. The proposed tool is important and useful for studying, control, optimization of EBMR process parameters and improving of the quality of the newly produced materials

    Electron Beam Melting and Refining of Metals: Computational Modeling and Optimization

    No full text
    Computational modeling offers an opportunity for a better understanding and investigation of thermal transfer mechanisms. It can be used for the optimization of the electron beam melting process and for obtaining new materials with improved characteristics that have many applications in the power industry, medicine, instrument engineering, electronics, etc. A time-dependent 3D axis-symmetrical heat model for simulation of thermal transfer in metal ingots solidified in a water-cooled crucible at electron beam melting and refining (EBMR) is developed. The model predicts the change in the temperature field in the casting ingot during the interaction of the beam with the material. A modified Pismen-Rekford numerical scheme to discretize the analytical model is developed. These equation systems, describing the thermal processes and main characteristics of the developed numerical method, are presented. In order to optimize the technological regimes, different criteria for better refinement and obtaining dendrite crystal structures are proposed. Analytical problems of mathematical optimization are formulated, discretized and heuristically solved by cluster methods. Using important for the practice simulation results, suggestions can be made for EBMR technology optimization. The proposed tool is important and useful for studying, control, optimization of EBMR process parameters and improving of the quality of the newly produced materials

    Study of the Possibility of Recycling of Technogenic Hafnium during Electron Beam Refining

    No full text
    The possibility of removing metallic (such as Zr, Fe, Cr, and Zn) impurities and non-metallic (such as [O] and C) impurities from technogenic hafnium through single and double refining in the conditions of electron beam melting (EBM) has been studied. The influence of thermodynamic and kinetic parameters on the degree of removal of these impurities from the base metal under vacuum conditions and within a temperature interval of 2500 K to 3100 K is defined. The relative volatility of metal impurities and the stability of the oxides and carbides present in the base metal are evaluated. The possibility for complete removal of Fe, Cr, Zn, [O], and C during EBM is shown. In the case of double refining, at a temperature of 2700 K for 20 min, the maximum degree of removal of Zr is 46.8%, the achieved highest hafnium purity is 99.004%, and the overall effectiveness of the refining of hafnium from impurities is 53%. There is a correlation between the degree of removal of Zr and the micro-hardness of the Hf ingots obtained after EBM. The weight losses vary in the ranges of 1.5–5.8% and 1–8% under the studied single and double refining processes, respectively

    Study on Hardness of Heat-Treated CoCrMo Alloy Recycled by Electron Beam Melting

    No full text
    The hardness of heat (thermally) treated CoCrMo ingots, recycled by electron beam melting and refining (EBMR) of a technogenic CoCrMo material (waste from the dental technology) under different process conditions (temperature and residence time) is examined. The heat treatment consists of two-step heating up to temperatures of 423 K and 1343 K and retention times of 40 and 60 min, respectively. The influence of various loads (0.98 N, 1.96 N, 2.94 N, 4.9 N, and 9.8 N) on the hardness of the CoCrMo alloy, recycled by EBMR, before and after heat treatment is studied. It has been found that regardless of the EBMR process conditions, the obtained samples after heat treatment have similar hardness values (between 494.2 HV and 505.9 HV) and they are significantly lower than the hardness of the specimens before the heat treatment. The highest hardness (600 HV) is measured in the alloy recycled at 1845 K refining temperature for 20 min. This is due to the smaller crystal structure of the resulting alloy and the higher cobalt content. The results obtained show that the heat treatment leads to considerable changes in the microstructure of the CoCrMo ingots recycled by EBMR. With the increase of the e-beam refining temperature, after the heat treatment, the grains’ size increases and the grains’ shape indicates an incomplete phase transition from γ-fcc to ε-hcp phase. This leads to a slight increase in the hardness of the alloy

    Behaviour of Impurities during Electron Beam Melting of Copper Technogenic Material

    No full text
    The current study presents the electron beam melting (EBM) efficiency of copper technogenic material with high impurity content (Se, Te, Pb, Bi, Sn, As, Sb, Zn, Ni, Ag, etc.) by means of thermodynamic analysis and experimental tests. On the basis of the calculated values of Gibbs free energy and the physical state of the impurity (liquid and gaseous), a thermodynamic assessment of the possible chemical interactions occurring in the Cu-Cu2O-Mex system in vacuum in the temperature range 1460–1800 K was made. The impact of the kinetic parameters (temperature and refining time) on the behaviour and the degree of removal of impurities was evaluated. Chemical and metallographic analysis of the obtained ingots is also discussed
    corecore