105 research outputs found

    Discharge Readiness for Families with a Premature Infant Living in Appalachia

    Get PDF
    With increased advances in technology, the overall survival rates in the Neonatal Intensive Care Unit (NICU) for premature infants at lower gestational ages, has also increased. Although premature infants survive at lower gestational ages, they are often discharged to home with unresolved medical issues. While the birth of a new baby for parents is a joyous occasion, they often have difficulty coping and transitioning into a parental role. Premature infants also have ongoing complications such as difficulty with feeding, developmental delays in growth, and long-term eye and respiratory complications. As a result of chronic health sequelae, premature infants require extensive utilization of hospital and community health resources. In addition, hospitals must coordinate between community resources, while preparing parents for specialized discharge teaching. Furthermore, individuals living in rural and underserved areas face unique challenges and barriers to access healthcare resources. An interpretive phenomenology study was conducted to bring insight and develop an understanding into how families perceive discharge readiness, accessing health care resources, and ability to cope at home after discharge from a Level III NICU located in Appalachia. Ten parents total were enrolled in the study and consisted of three couples, three married mothers, and two single mothers. Interviews were conducted over a period of six months and transcript analysis revealed development of major and minor themes. The studies overarching theme was Adapting to a New Family Roles, Finding Normalcy, which described parents experience of being prepared for discharge and their transition to home. Three major themes related to discharge readiness from detailed analysis included; 1) Riding out the storm, 2) Righting the ship, and 3) Safe port, finding solid ground. Subthemes that supported development of the major these were 1a) having the carpet pulled out from under me, 1b) things I lost, 1c) feel like an outsider, 1d) sink or swim, 2a) quest for knowledge, 2b) caring for me, care for my baby, 2c) customized learning, 3a) getting to know baby, 3b) becoming the expert, 3c) ongoing emotions, and 3d) adjusted parental role. Practice and research implications for discharge readiness include providing customized support for parents as they adjust to a new normal for their family, identify necessary resources, and become self-reliant once home

    XASH genes promote neurogenesis in Xenopus embryos

    Get PDF
    Neural development in Drosophila is promoted by a family of basic helix-loop-helix (bHLH) transcription factors encoded within the Achaete Scute-Complex (AS-C). XASH- 3, a Xenopus homolog of the Drosophila AS-C genes, is expressed during neural induction within a portion of the dorsal ectoderm that gives rise to the neural plate and tube. Here, we show that XASH-3, when expressed with the promiscuous binding partner XE12, specifically activates the expression of neural genes in naive ectoderm, suggesting that XASH-3 promotes neural development. Moreover, XASH-3/XE12 RNA injections into embryos lead to hypertrophy of the neural tube. Interestingly, XASH-3 misexpression does not lead to the formation of ectopic neural tissue in ventral regions, suggesting that the domain of XASH proneural function is restricted in the embryo. In contrast to the neural inducer noggin, which permanently activates the NCAM gene, the activation of neural genes by XASH-3/XE12 is not stable in naive ectoderm, yet XASH-3/XE12 powerfully and stably activates NCAM, Neurofilament and type III β-tubulin gene expression in noggintreated ectoderm. These results show that the XASH-3 promotes neural development, and suggest that its activity depends on additional factors which are induced in ectoderm by factors such as noggin

    Effects of deep sedation or general anesthesia on cardiac function in mice undergoing cardiovascular magnetic resonance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetically engineered mouse models of human cardiovascular disease provide an opportunity to understand critical pathophysiological mechanisms. Cardiovascular magnetic resonance (CMR) provides precise reproducible assessment of cardiac structure and function, but, in contrast to echocardiography, requires that the animal be immobilized during image acquisition. General anesthetic regimens yield satisfactory images, but have the potential to significantly perturb cardiac function. The purpose of this study was to assess the effects of general anesthesia and a new deep sedation regimen, respectively, on cardiac function in mice as determined by CMR, and to compare them to results obtained in mildly sedated conscious mice by echocardiography.</p> <p>Results</p> <p>In 6 mildly sedated normal conscious mice assessed by echo, heart rate was 615 ± 25 min<sup>-1 </sup>(mean ± SE) and left ventricular ejection fraction (LVEF) was 0.94 ± 0.01. In the CMR studies of normal mice, heart rate was slightly lower during deep sedation with morphine/midazolam (583 ± 30 min<sup>-1</sup>), but the difference was not statistically significant. General anesthesia with 1% inhaled isoflurane significantly depressed heart rate (468 ± 7 min<sup>-1</sup>, p < 0.05 vs. conscious sedation). In 6 additional mice with ischemic LV failure, trends in heart rate were similar, but not statistically significant. In normal mice, deep sedation depressed LVEF (0.79 ± 0.04, p < 0.05 compared to light sedation), but to a significantly lesser extent than general anesthesia (0.60 ± 0.04, p < 0.05 vs. deep sedation).</p> <p>In mice with ischemic LV failure, ejection fraction measurements were comparable when performed during light sedation, deep sedation, and general anesthesia, respectively. Contrast-to-noise ratios were similar during deep sedation and during general anesthesia, indicating comparable image quality. Left ventricular mass measurements made by CMR during deep sedation were nearly identical to those made during general anesthesia (r<sup>2 </sup>= 0.99, mean absolute difference < 4%), indicating equivalent quantitative accuracy obtained with the two methods. The imaging procedures were well-tolerated in all mice.</p> <p>Conclusion</p> <p>In mice with normal cardiac function, CMR during deep sedation causes significantly less depression of heart rate and ejection fraction than imaging during general anesthesia with isoflurane. In mice with heart failure, the sedation/anesthesia regimen had no clear impact on cardiac function. Deep sedation and general anesthesia produced CMR with comparable image quality and quantitative accuracy.</p

    Comparing aging and fitness effects on brain anatomy

    Get PDF
    Recent studies suggest that cardiorespiratory fitness (CRF) mitigates the brain’s atrophy typically associated with aging, via a variety of beneficial mechanisms. One could argue that if CRF is generally counteracting the negative effects of aging, the same regions that display the greatest age-related volumetric loss should also show the largest beneficial effects of fitness. To test this hypothesis we examined structural MRI data from 54 healthy older adults (ages 55–87), to determine the overlap, across brain regions, of the profiles of age and fitness effects. Results showed that lower fitness and older age are associated with atrophy in several brain regions, replicating past studies. However, when the profiles of age and fitness effects were compared using a number of statistical approaches, the effects were not entirely overlapping. Interestingly, some of the regions that were most influenced by age were among those not influenced by fitness. Presumably, the age-related atrophy occurring in these regions is due to factors that are more impervious to the beneficial effects of fitness. Possible mechanisms supporting regional heterogeneity may include differential involvement in motor function, the presence of adult neurogenesis, and differential sensitivity to cerebrovascular, neurotrophic and metabolic factors

    A Dynamic Pathway for Calcium-Independent Activation of CaMKII by Methionine Oxidation

    Get PDF
    SummaryCalcium/calmodulin (Ca2+/CaM)-dependent protein kinase II (CaMKII) couples increases in cellular Ca2+ to fundamental responses in excitable cells. CaMKII was identified over 20 years ago by activation dependence on Ca2+/CaM, but recent evidence shows that CaMKII activity is also enhanced by pro-oxidant conditions. Here we show that oxidation of paired regulatory domain methionine residues sustains CaMKII activity in the absence of Ca2+/CaM. CaMKII is activated by angiotensin II (AngII)-induced oxidation, leading to apoptosis in cardiomyocytes both in vitro and in vivo. CaMKII oxidation is reversed by methionine sulfoxide reductase A (MsrA), and MsrA−/− mice show exaggerated CaMKII oxidation and myocardial apoptosis, impaired cardiac function, and increased mortality after myocardial infarction. Our data demonstrate a dynamic mechanism for CaMKII activation by oxidation and highlight the critical importance of oxidation-dependent CaMKII activation to AngII and ischemic myocardial apoptosis

    Understanding and measuring child welfare outcomes

    Get PDF
    The new Children\u27s and Family Services Reviews (CFSR) process focuses on the effectiveness of services to children and families by measuring client outcomes. This article reviews the research literature related to child welfare outcomes in order to provide a context for federal accountability efforts. It also summarizes the 2001 federal mandate to hold states accountable for child welfare outcomes and describes California\u27s response to this mandate. Implications of the outcomes literature review and measurement problems in the CFSR process suggest CSFR measures do not always capture meaningful outcomes. Recommendations for change are made

    Experimental Documentary Practices — with Andrea Luka Zimmerman

    No full text
    Award-winning artist, filmmaker, and activist Andrea Luka Zimmerman joins Below the Radar from the UK to speak to us about her approach to making art and films — in deep collaboration, over long periods of time, and always cultivating community. Host Am Johal speaks to Andrea about how her work explores counter-memories to structural violence and how we dream together to build new worlds. &nbsp; They discuss Andrea’s past and recent works, including Estate, A Reverie, Here for Life, and others, delving into the aesthetics and experimental nature of her work, as well as the political orientation around themes of displacement, gentrification, human rights, and social connection that run through her practice
    • …
    corecore