3 research outputs found

    Gain of cis-regulatory activities underlies novel domains of wingless gene expression in Drosophila.

    Get PDF
    動物の新しい特徴が進化する仕組みを解明 -ショウジョウバエのcis制御領域の獲得によるwingless発現領域の獲得-. 京都大学プレスリリース. 2015-06-02.Changes in gene expression during animal development are largely responsible for the evolution of morphological diversity. However, the genetic and molecular mechanisms responsible for the origins of new gene-expression domains have been difficult to elucidate. Here, we sought to identify molecular events underlying the origins of three novel features of wingless (wg) gene expression that are associated with distinct pigmentation patterns in Drosophila guttifera. We compared the activity of cis-regulatory sequences (enhancers) across the wg locus in D. guttifera and Drosophila melanogaster and found strong functional conservation among the enhancers that control similar patterns of wg expression in larval imaginal discs that are essential for appendage development. For pupal tissues, however, we found three novel wg enhancer activities in D. guttifera associated with novel domains of wg expression, including two enhancers located surprisingly far away in an intron of the distant Wnt10 gene. Detailed analysis of one enhancer (the vein-tip enhancer) revealed that it overlapped with a region controlling wg expression in wing crossveins (crossvein enhancer) in D. guttifera and other species. Our results indicate that one novel domain of wg expression in D. guttifera wings evolved by co-opting pre-existing regulatory sequences governing gene activity in the developing wing. We suggest that the modification of existing enhancers is a common path to the evolution of new gene-expression domains and enhancers

    Spatial transcriptomics reveals antiparasitic targets associated with essential behaviors in the human parasite Brugia malayi.

    No full text
    Lymphatic filariasis (LF) is a chronic debilitating neglected tropical disease (NTD) caused by mosquito-transmitted nematodes that afflicts over 60 million people. Control of LF relies on routine mass drug administration with antiparasitics that clear circulating larval parasites but are ineffective against adults. The development of effective adulticides is hampered by a poor understanding of the processes and tissues driving parasite survival in the host. The adult filariae head region contains essential tissues that control parasite feeding, sensory, secretory, and reproductive behaviors, which express promising molecular substrates for the development of antifilarial drugs, vaccines, and diagnostics. We have adapted spatial transcriptomic approaches to map gene expression patterns across these prioritized but historically intractable head tissues. Spatial and tissue-resolved data reveal distinct biases in the origins of known drug targets and secreted antigens. These data were used to identify potential new drug and vaccine targets, including putative hidden antigens expressed in the alimentary canal, and to spatially associate receptor subunits belonging to druggable families. Spatial transcriptomic approaches provide a powerful resource to aid gene function inference and seed antiparasitic discovery pipelines across helminths of relevance to human and animal health
    corecore