628 research outputs found

    The Last Eight-Billion Years of Intergalactic SiIV Evolution

    Full text link
    We identified 24 SiIV absorption systems with z <~ 1 from a blind survey of 49 low-redshift quasars with archival Hubble Space Telescope ultraviolet spectra. We relied solely on the characteristic wavelength separation of the doublet to automatically detect candidates. After visual inspection, we defined a sample of 20 definite (group G = 1) and 4 "highly-likely" (G = 2) doublets with rest equivalent widths W_r for both lines detected at > 3 sigma. The absorber line density of the G = 1 doublets was dN_SiIV/dX = 1.4+0.4/-0.3 for log N(Si+3) > 12.9. The best-fit power law to the G = 1 frequency distribution of column densities f(N(Si+3)) had normalization k = (1.2+0.5/-0.4) x 10^-14 cm2 and slope alpha = -1.6+0.3/-0.3. Using the power-law model of f(N(Si+3)), we measured the Si+3 mass density relative to the critical density: Omega(Si+3) = (3.7+2.8/-1.7) x 10^-8 for 13 < log N(Si+3) < 15. From Monte Carlo sampling of the distributions, we estimated our value to be a factor of 4.8+3.0/-1.9 higher than the 2 . From a simple linear fit to Omega(Si+3) over the age of the Universe, we estimated a slow and steady increase from z = 5.5 --> 0 with dOmega/dt_age = (0.61+/-0.23) x 10^-8 Gyr^-1. We compared our ionic ratios N(Si+3)/N(C+3) to a 2 < z < 4.5 sample and concluded, from survival analysis, that the two populations are similar, with median = 0.16.Comment: 18 pages, 9 figures, 4 tables, added figures and new analysis, results have changed, accepted to Ap

    The spt-Crank for Ordinary Partitions

    Full text link
    The spt-function spt(n)spt(n) was introduced by Andrews as the weighted counting of partitions of nn with respect to the number of occurrences of the smallest part. Andrews, Garvan and Liang defined the spt-crank of an SS-partition which leads to combinatorial interpretations of the congruences of spt(n)spt(n) mod 5 and 7. Let NS(m,n)N_S(m,n) denote the net number of SS-partitions of nn with spt-crank mm. Andrews, Garvan and Liang showed that NS(m,n)N_S(m,n) is nonnegative for all integers mm and positive integers nn, and they asked the question of finding a combinatorial interpretation of NS(m,n)N_S(m,n). In this paper, we introduce the structure of doubly marked partitions and define the spt-crank of a doubly marked partition. We show that NS(m,n)N_S(m,n) can be interpreted as the number of doubly marked partitions of nn with spt-crank mm. Moreover, we establish a bijection between marked partitions of nn and doubly marked partitions of nn. A marked partition is defined by Andrews, Dyson and Rhoades as a partition with exactly one of the smallest parts marked. They consider it a challenge to find a definition of the spt-crank of a marked partition so that the set of marked partitions of 5n+45n+4 and 7n+57n+5 can be divided into five and seven equinumerous classes. The definition of spt-crank for doubly marked partitions and the bijection between the marked partitions and doubly marked partitions leads to a solution to the problem of Andrews, Dyson and Rhoades.Comment: 22 pages, 6 figure

    Characterizing the Low-Redshift Intergalactic Medium towards PKS1302-102

    Full text link
    We present a detailed analysis of the intergalactic metal-line absorption systems in the archival HST/STIS and FUSE ultraviolet spectra of the low-redshift quasar PKS1302-102 (z_QSO = 0.2784). We supplement the archive data with CLOUDY ionization models and a survey of galaxies in the quasar field. There are 15 strong Lya absorbers with column densities logN_HI > 14. Of these, six are associated with at least CIII 977 absorption (logN(C^++) > 13); this implies a redshift density dN_CIII/dz = 36+13/-9 (68% confidence limits) for the five detections with rest equivalent width W_r > 50 mA. Two systems show OVI 1031,1037 absorption in addition to CIII (logN(O^+5) > 14). One is a partial Lyman limit system (logN_HI = 17) with associated CIII, OVI, and SiIII 1206 absorption. There are three tentative OVI systems that do not have CIII detected. For one OVI doublet with both lines detected at 3 sigma with W_r > 50 mA, dN_OVI/dz = 7+9/-4. We also search for OVI doublets without Lya absorption but identify none. From CLOUDY modeling, these metal-line systems have metallicities spanning the range -4 < [M/H] < -0.3. The two OVI systems with associated CIII absorption cannot be single-phase, collisionally-ionized media based on the relative abundances of the metals and kinematic arguments. From the galaxy survey, we discover that the absorption systems are in a diverse set of galactic environments. Each metal-line system has at least one galaxy within 500 km/s and 600 h^-1 kpc with L > 0.1 L_*.Comment: 21 pages in emulatepj form, 24 figures, 10 tables, accepted to Ap

    Can Transition Metals and Group II Mono- and Dications Discriminate between Homo- and Heterochiral XYYX’ Dimers (X,X’=H,Me; Y=O,S,Se)?

    Get PDF
    We present a density functional theory and ab initio (MP2) study of stereoisomer discrimination between the homochiral and heterochiral dimers of the form M(XYYX’)2, where M is a cationic metal (Li+, Ca2+, Zn2+, Cu+, Cu2+) complexing chalcogen-chalcogen bridges (H2O2, H2S2, H2Se2, and their corresponding methyl and dimethyl derivatives). The heterochiral complexes examined were in general found to be more stable than the homochiral complexes, with the exception of several selenium-containing complexes. The large majority of the relative energy differences amounted to 1 kJ/mol or less, with the largest energy gap being 3.42 kJ/mol in the case of Ca2+(HSeSe(CH3))2 at B3LYP/aug-cc-pVTZ. Racemization mechanisms of these complexes and the description of their bonding using the Atoms in Molecules theory of Bader are also presented

    The Gemini Deep Deep Survey: II. Metals in Star-Forming Galaxies at Redshift 1.3<z<2

    Full text link
    The goal of the Gemini Deep Deep Survey (GDDS) is to study an unbiased sample of K<20.6 galaxies in the redshift range 0.8<z<2.0. Here we determine the statistical properties of the heavy element enrichment in the interstellar medium (ISM) of a subsample of 13 galaxies with 1.34<z<1.97 and UV absolute magnitude M_2000 < -19.65. The sample contains 38% of the total number of identified galaxies in the first two fields of the survey with z>1.3. The selected objects have colors typical of irregular and Sbc galaxies. Strong [OII] emission indicates high star formation activity in the HII regions (SFR~13-106 M_sun/yr). The high S/N composite spectrum shows strong ISM MgII and FeII absorption, together with weak MnII and MgI lines. The FeII column density, derived using the curve of growth analysis, is logN_FeII = 15.54^{+0.23}_{-0.13}. This is considerably larger than typical values found in damped Ly-alpha systems (DLAs) along QSO sight lines, where only 10 out of 87 (~11%) have logN_FeII > 15.2. High FeII column densities are observed in the z=2.72 Lyman break galaxy cB58 (logN_FeII ~ 15.25) and in gamma-ray burst host galaxies (logN_FeII ~ 14.8-15.9). Given our measured FeII column density and assuming a moderate iron dust depletion (delta_Fe ~ 1 dex), we derive an optical dust extinction A_V ~ 0.6. If the HI column density is log N(HI)<21.7 (as in 98% of DLAs), then the mean metallicity is Z/Z_sun > 0.2. The high completeness of the GDDS sample implies that these results are typical of star-forming galaxies in the 1<z<2 redshift range, an epoch which has heretofore been particularly challenging for observational programs.Comment: ApJ in press, corrected HI column density estimat

    Cosmic Star Formation History and its Dependence on Galaxy Stellar Mass

    Full text link
    We examine the cosmic star formation rate (SFR) and its dependence on galaxy stellar mass over the redshift range 0.8 < z < 2 using data from the Gemini Deep Deep Survey (GDDS). The SFR in the most massive galaxies (M > 10^{10.8} M_sun) was six times higher at z = 2 than it is today. It drops steeply from z = 2, reaching the present day value at z ~ 1. In contrast, the SFR density of intermediate mass galaxies (10^{10.2} < M < 10^{10.8} M_sun) declines more slowly and may peak or plateau at z ~ 1.5. We use the characteristic growth time t_SFR = rho_M / rho_SFR to provide evidence of an associated transition in massive galaxies from a burst to a quiescent star formation mode at z ~ 2. Intermediate mass systems transit from burst to quiescent mode at z ~ 1, while the lowest mass objects undergo bursts throughout our redshift range. Our results show unambiguously that the formation era for galaxies was extended and proceeded from high to low mass systems. The most massive galaxies formed most of their stars in the first ~3 Gyr of cosmic history. Intermediate mass objects continued to form their dominant stellar mass for an additional ~2 Gyr, while the lowest mass systems have been forming over the whole cosmic epoch spanned by the GDDS. This view of galaxy formation clearly supports `downsizing' in the SFR where the most massive galaxies form first and galaxy formation proceeds from larger to smaller mass scales.Comment: Accepted for publication in ApJ

    Evolved Galaxies at z > 1.5 from the Gemini Deep Deep Survey: The Formation Epoch of Massive Stellar Systems

    Get PDF
    We present spectroscopic evidence from the Gemini Deep Deep Survey (GDDS) for a significant population of color-selected red galaxies at 1.3 < z < 2.2 whose integrated light is dominated by evolved stars. Unlike radio-selected objects, the z > 1.5 old galaxies have a sky density > 0.1 per sq. arcmin. Conservative age estimates for 20 galaxies with z > 1.3; = 1.49, give a median age of 1.2 Gyr and = 2.4. One quarter of the galaxies have inferred z_f > 4. Models restricted to abundances less than or equal to solar give median ages and z_f of 2.3 Gyr and 3.3, respectively. These galaxies are among the most massive and contribute approximately 50% of the stellar mass density at 1 < z < 2. The derived ages and most probable star formation histories suggest a high star-formation-rate (300-500 solar masses per year) phase in the progenitor population. We argue that most of the red galaxies are not descendants of the typical z=3 Lyman break galaxies. Galaxies associated with luminous sub-mm sources have the requisite star formation rates to be the progenitor population. Our results point toward early and rapid formation for a significant fraction of present day massive galaxies.Comment: 12 pages, 2 figures, 1 table, Accepted for publication, ApJ Letter
    corecore