11 research outputs found
A study protocol for applying the co-creating knowledge translation framework to a population health study
BACKGROUND: Population health research can generate significant outcomes for communities, while Knowledge Translation (KT) aims to expressly maximize the outcomes of knowledge producing activity. Yet the two approaches are seldom explicitly combined as part of the research process. A population health study in Port Lincoln, South Australia offered the opportunity to develop and apply the co-KT Framework to the entire research process. This is a new framework to facilitate knowledge formation collaboratively between researchers and communities throughout a research to intervention implementation process. DESIGN: This study employs a five step framework (the co-KT Framework) that is formulated from engaged scholarship and action research principles. By following the steps a knowledge base will be cumulatively co-created with the study population that is useful to the research aims. Step 1 is the initiating of contact between the researcher and the study contexts, and the framing of the research issue, achieved through a systematic data collection tool. Step 2 refines the research issue and the knowledge base by building into it context specific details and conducting knowledge exchange events. Step 3 involves interpreting and analysing the knowledge base, and integrating evidence to inform intervention development. In Step 4 the intervention will be piloted and evaluated. Step 5 is the completion of the research process where outcomes for improvement will be instituted as regular practice with the facilitation of the community. In summary, the model uses an iterative knowledge construction mechanism that is complemented by external evidence to design interventions to address health priorities within the community. DISCUSSION: This is a systematic approach that operationalises the translational cycle using a framework for KT practice. It begins with the local context as its foundation for knowledge creation and ends with the development of contextually applicable interventions. It will be of interest to those involved in KT research, participatory action research, population health research and health care systems studies. The co-KT Framework is a method for embedding the principles of KT into all stages of a community-based research process, in which research questions are framed by emergent data from each previous stage.Kathryn Powell, Alison Kitson, Elizabeth Hoon, Jonathan Newbury, Anne Wilson and Justin Beilb
Two weeks of docosahexaenoic acid (DHA) supplementation increases synthesis-secretion kinetics of n-3 polyunsaturated fatty acids compared to 8 weeks of DHA supplementation
The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.jnutbio.2018.07.002 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Docosahexaenoic acid (DHA, 22:6n-3) must be consumed in the diet or synthesized from n-3 polyunsaturated fatty acid (PUFA) precursors. However, the effect of dietary DHA on the metabolic pathway is not fully understood. Presently, 21-day-old Long Evans rats were weaned onto one of four dietary protocols: 1) 8 weeks of 2% ALA (ALA), 2) 6 weeks ALA followed by 2 weeks of 2% ALA + 2% DHA (DHA), 3) 4 weeks ALA followed by 4 weeks DHA and 4) 8 weeks of DHA. After the feeding period, 2H5-ALA and 13C20-eicosapentaenoic acid (EPA, 20:5n-3) were co-infused and blood was collected over 3 h for determination of whole-body synthesis-secretion kinetics. The synthesis-secretion coefficient (ml/min, means ± SEM) for EPA (0.238±0.104 vs. 0.021±0.001) and DPAn-3 (0.194±0.060 vs. 0.020±0.008) synthesis from plasma unesterified ALA, and DPAn-3 from plasma unesterified EPA (2.04±0.89 vs. 0.163±0.025) were higher (P<.05) after 2 weeks compared to 8 weeks of DHA feeding. The daily synthesis-secretion rate (nmol/d) of DHA from EPA was highest after 4 weeks of DHA feeding (843±409) compared to no DHA (70±22). Liver gene expression of ELOVL2 and FADS2 were lower (P<.05) after 4 vs. 8 weeks of DHA. Higher synthesis-secretion kinetics after 2 and 4 weeks of DHA feeding suggests an increased throughput of the PUFA metabolic pathway. Furthermore, these findings may lead to novel dietary strategies to maximize DHA levels while minimizing dietary requirements.Natural Sciences and Engineering Research Council of Canada || 48259
Knowledge translation within a population health study: how do you do it?
BACKGROUND Despite the considerable and growing body of knowledge translation (KT) literature, there are few methodologies sufficiently detailed to guide an integrated KT research approach for a population health study. This paper argues for a clearly articulated collaborative KT approach to be embedded within the research design from the outset. DISCUSSION Population health studies are complex in their own right, and strategies to engage the local community in adopting new interventions are often fraught with considerable challenges. In order to maximise the impact of population health research, more explicit KT strategies need to be developed from the outset. We present four propositions, arising from our work in developing a KT framework for a population health study. These cover the need for an explicit theory-informed conceptual framework; formalizing collaborative approaches within the design; making explicit the roles of both the stakeholders and the researchers; and clarifying what counts as evidence. From our deliberations on these propositions, our own co-creating (co-KT) Framework emerged in which KT is defined as both a theoretical and practical framework for actioning the intent of researchers and communities to co-create, refine, implement and evaluate the impact of new knowledge that is sensitive to the context (values, norms and tacit knowledge) where it is generated and used. The co-KT Framework has five steps. These include initial contact and framing the issue; refining and testing knowledge; interpreting, contextualising and adapting knowledge to the local context; implementing and evaluating; and finally, the embedding and translating of new knowledge into practice. SUMMARY Although descriptions of how to incorporate KT into research designs are increasing, current theoretical and operational frameworks do not generally span a holistic process from knowledge co-creation to knowledge application and implementation within one project. Population health studies may have greater health impact when KT is incorporated early and explicitly into the research design. This, we argue, will require that particular attention be paid to collaborative approaches, stakeholder identification and engagement, the nature and sources of evidence used, and the role of the research team working with the local study community.Alison Kitson, Kathryn Powell, Elizabeth Hoon, Jonathan Newbury, Anne Wilson, Justin Beilb
Whole-body DHA synthesis-secretion kinetics from plasma eicosapentaenoic acid and alpha-linolenic acid in the free-living rat
AbstractWhole body docosahexaenoic acid (DHA, 22:6n-3) synthesis from α-linolenic acid (ALA, 18:3n-3) is considered to be very low, however, the daily synthesis-secretion of DHA may be sufficient to supply the adult brain. The current study aims to assess whether whole body DHA synthesis-secretion kinetics are different when comparing plasma ALA versus eicosapentaenoic acid (EPA, 20:5n-3) as the precursor. Male Long Evans rats (n=6) were fed a 2% ALA in total fat diet for eight weeks, followed by surgery to implant a catheter into each of the jugular vein and carotid artery and 3h of steady-state infusion with a known amount of 2H-ALA and 13C-eicosapentaenoic acid (EPA, 20:5n3). Blood samples were collected at thirty-minute intervals and plasma enrichment of 2H- and 13C EPA, n−3 docosapentaenoic acid (DPAn-3, 22:5n-3) and DHA were determined for assessment of synthesis-secretion kinetic parameters. Results indicate a 13-fold higher synthesis-secretion coefficient for DHA from EPA as compared to ALA. However, after correcting for the 6.6 fold higher endogenous plasma ALA concentration, no significant differences in daily synthesis-secretion (nmol/day) of DHA (97.6±28.2 and 172±62), DPAn-3 (853±279 and 1139±484) or EPA (1587±592 and 1628±366) were observed from plasma unesterified ALA and EPA sources, respectively. These results suggest that typical diets which are significantly higher in ALA compared to EPA yield similar daily DHA synthesis-secretion despite a significantly higher synthesis-secretion coefficient from EPA
Plasma non-esterified docosahexaenoic acid is the major pool supplying the brain : Plasma NEFA pool supplies the brain with DHA
Acknowledgements This project was funded by a NSERC and CIHR grant to R.P.B. and studentship to C.T.C. R.P.B. holds a Canada Research Chair in Brain Lipid Metabolism. R.P.B. acknowledges support and mass spectrometry equipment and solutions for lipidomics from Sciex. Computer programmable pump software was designed by Dr. Brian Scott. HPLC analyses were performed at the Analytical Facility at the Department of Nutritional Sciences by Dr. Zhen Liu. LC/MS/MS analyses of NEFA-DHA and LPC-DHA and MALDI imaging were performed at the Analytical Facility for Bioactive Molecules (AFBM) with the assistance of Michael Leadley. The AFBM is part of the Centre for the Study of Complex Childhood Diseases (CSCCD) at the Hospital for Sick Children, Toronto, Ontario. CSCCD was supported by Canadian Foundation for Innovation (CFI).Peer reviewedPublisher PD