177 research outputs found

    RNA interference modulates replication of dengue virus in Drosophila melanogaster cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mosquito-borne dengue virus (DENV, genus <it>Flavivirus</it>) has emerged as a major threat to global human health in recent decades, and novel strategies to contain the escalating dengue fever pandemic are urgently needed. RNA interference (RNAi) induced by exogenous small interfering RNAs (siRNAs) has shown promise for treatment of flavivirus infections in hosts and prevention of transmission by vectors. However, the impact of RNAi triggered by authentic virus infection on replication of DENV, or any flavivirus, has received little study. The objectives of the current study were threefold: first, to assess the utility of <it>Drosophila melanogaster </it>S2 cells for the study of DENV, second to investigate the impact of multiple enzymes in the RNAi pathway on DENV replication; and third to test for variation in the response of the four serotypes of DENV to modulation of RNAi.</p> <p>Results</p> <p>Three strains from each of the four DENV serotypes showed replication in S2 cells following infection at multiplicity of infection (MOI) 0.1 and MOI 10; each strain achieved titers > 4.0 log<sub>10</sub>pfu/ml five days after infection at MOI 10. The four serotypes did not differ in mean titer. S2 cells infected with DENV-1, 2, 3 or 4 produced siRNAs, indicating that infection triggered an RNAi response. Knockdown of one of the major enzymes in the RNAi pathway, Dicer-2 (Dcr-2), resulted in a 10 to 100-fold enhancement of replication of all twelve strains of DENV in S2 cells. While serotypes did not differ in their average response to Dcr-2 knockdown, strains within serotypes showed significant differences in their sensitivity to Dcr-2 knockdown. Moreover, knockdown of three additional components of the RNAi pathway, Argonaute 2 (Ago-2), Dcr-1 and Ago-1, also resulted in a significant increase in replication of the two DENV strains tested, and the magnitude of this increase was similar to that resulting from Dcr-2 knockdown.</p> <p>Conclusions</p> <p>These findings indicate that DENV can replicate in <it>Drosophila </it>S2 cells and that the RNAi pathway plays a role in modulating DENV replication in these cells. S2 cells offer a useful cell culture model for evaluation of the interaction between DENV and the RNAi response.</p

    The Coordinating Research on Emerging Arboviral Threats Encompassing the Neotropics (CREATE-NEO)

    Get PDF
    Arthropod-borne viruses, such as dengue, Zika, and Mayaro, are emerging at an accelerating rate in the neotropics. The C oordinating R esearch on E merging A rboviral T hreats E ncompassing the Neo tropics (CREATE-NEO) project, a part of the NIH-funded Centers for Research in Emerging Infectious Diseases (CREID) network provides a nimble and flexible network of surveillance sites in Central and South America coupled with cutting-edge modeling approaches to anticipate and counter these threats to public health. Collected data and generated models will be utilized to inform and alert local, regional, and global public health agencies of enzootic arboviruses with a high risk of spillover, emergence, and transmission among humans, and/or international spread. CREATE-NEO builds capacity in situ to anticipate, detect, and respond to emerging arboviruses at the point of origin, thereby maximizing the potential to avert full-blown emergence and widespread epidemics

    Superior infectivity for mosquito vectors contributes to competitive displacement among strains of dengue virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Competitive displacement of a weakly virulent pathogen strain by a more virulent strain is one route to disease emergence. However the mechanisms by which pathogens compete for access to hosts are poorly understood. Among vector-borne pathogens, variation in the ability to infect vectors may effect displacement. The current study focused on competitive displacement in dengue virus serotype 3 (DENV3), a mosquito-borne pathogen of humans. In Sri Lanka in the 1980's, a native DENV3 strain associated with relatively mild dengue disease was displaced by an invasive DENV3 strain associated with the most severe disease manifestations, dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), resulting in an outbreak of DHF/DSS. Here we tested the hypothesis that differences between the invasive and native strain in their infectivity for <it>Aedes aegypti </it>mosquitoes, the primary vector of DENV, contributed to the competitive success of the invasive strain</p> <p>Results</p> <p>To be transmitted by a mosquito, DENV must infect and replicate in the midgut, disseminate into the hemocoel, infect the salivary glands, and be released into the saliva. The ability of the native and invasive DENV3 strains to complete the first three steps of this process in <it>Aedes aegypti </it>mosquitoes was measured <it>in vivo</it>. The invasive strain infected a similar proportion of mosquitoes as the native strain but replicated to significantly higher titers in the midgut and disseminated with significantly greater efficiency than the native strain. In contrast, the native and invasive strain showed no significant difference in replication in cultured mosquito, monkey or human cells.</p> <p>Conclusion</p> <p>The invasive DENV3 strain infects and disseminates in <it>Ae. aegypti </it>more efficiently than the displaced native DENV3 strain, suggesting that the invasive strain is transmitted more efficiently. Replication in cultured cells did not adequately characterize the known phenotypic differences between native and invasive DENV3 strains. Infection dynamics within the vector may have a significant impact on the spread and replacement of dengue virus lineages.</p

    Repertoire of virus-derived small RNAs produced by mosquito and mammalian cells in response to dengue virus infection

    Get PDF
    AbstractRNA interference (RNAi) is the major defense of many arthropods against arthropod-borne RNA viruses (arboviruses), but the role of RNAi in vertebrate immunity to arboviruses is not clear. RNA viruses can trigger RNAi in vertebrate cells, but the vertebrate interferon response may obscure this interaction. We quantified virus-derived small RNAs (vRNAs) generated by mosquito (U4.4) cells and interferon-deficient (Vero) and interferon-competent (HuH-7) mammalian cells infected with a single isolate of mosquito-borne dengue virus. Mosquito cells produced significantly more vRNAs than mammalian cells, and mosquito cell vRNAs were derived from both the positive- and negative-sense dengue genomes whereas mammalian cell vRNAs were derived primarily from positive-sense genome. Mosquito cell vRNAs were predominantly 21 nucleotides in length whereas mammalian cell vRNAs were between 12 and 36 nucleotides with a modest peak at 24 nucleotides. Hot-spots, regions of the virus genome that generated a disproportionate number of vRNAs, overlapped among the cell lines

    Larval ecology of mosquitoes in sylvatic arbovirus foci in southeastern Senegal

    Get PDF
    BACKGROUND: Although adult mosquito vectors of sylvatic arbovirus [yellow fever (YFV), dengue-2 (DENV-2) and chikungunya (CHIKV)] have been studied for the past 40 years in southeastern Senegal, data are still lacking on the ecology of larval mosquitoes in this area. In this study, we investigated the larval habitats of mosquitoes and characterized their seasonal and spatial dynamics in arbovirus foci. METHODS: We searched for wet microhabitats, classified in 9 categories, in five land cover classes (agriculture, forest, savannah, barren and village) from June, 2010 to January, 2011. Mosquito immatures were sampled monthly in up to 30 microhabitats of each category per land cover and bred until adult stage for determination. RESULTS: No wet microhabitats were found in the agricultural sites; in the remaining land covers immature stages of 35 mosquito species in 7 genera were sampled from 9 microhabitats (tree holes, fresh fruit husks, decaying fruit husks, puddles, bamboo holes, discarded containers, tires, rock holes and storage containers). The most abundant species was Aedes aegypti formosus, representing 30.2% of the collections, followed by 12 species, representing each more than 1% of the total, among them the arbovirus vectors Ae. vittatus (7.9%), Ae. luteocephalus (5.7%), Ae. taylori (5.0%), and Ae. furcifer (1.3%). Aedes aegypti, Cx. nebulosus, Cx. perfuscus, Cx. tritaeniorhynchus, Er. chrysogster and Ae. vittatus were the only common species collected from all land covers. Aedes furcifer and Ae. taylori were collected in fresh fruit husks and tree holes. Species richness and dominance varied significantly in land covers and microhabitats. Positive associations were found mainly between Ae. furcifer, Ae. taylori and Ae. luteocephalus. A high proportion of potential enzootic vectors that are not anthropophilic were found in the larval mosquito fauna. CONCLUSIONS: In southeastern Senegal, Ae. furcifer and Ae. taylori larvae showed a more limited distribution among both land cover and microhabitat types than the other common species. Uniquely among vector species, Ae. aegypti formosus larvae occurred at the highest frequency in villages. Finally, a high proportion of the potential non-anthropophilic vectors were represented in the larval mosquito fauna, suggesting the existence of unidentified sylvatic arbovirus cycles in southeastern Senegal

    Shifts in mosquito diversity and abundance along a gradient from oil palm plantations to conterminous forests in Borneo

    Get PDF
    Deforestation precipitates spillover of enzootic, vector-borne viruses into humans, but specific mechanisms for this effect have rarely been investigated. Expansion of oil palm cultivation is a major driver of deforestation. Here, we demonstrate that mosquito abundance decreased over ten stepwise distances from interior forest into conterminous palm plantations in Borneo. Diversity in interior plantation narrowed to one species, Aedes albopictus, a potential bridge vector for spillover of multiple viruses. A. albopictus was equally abundant across all distances in forests, forest-plantation edge, and plantations, while A. niveus, a known vector of sylvatic dengue virus, was found only in forests. A. albopictus collections were significantly female-biased in plantation but not in edge or forest. Our data reveal that the likelihood of encountering any mosquito is greater in interior forest and edge than plantation, while the likelihood of encountering A. albopictus is equivalent across the gradient sampled from interior plantation to interior forest

    A trade-off in replication in mosquito versus mammalian systems conferred by a point mutation in the NS4B protein of dengue virus type 4

    Get PDF
    AbstractAn acceptable live-attenuated dengue virus vaccine candidate should have low potential for transmission by mosquitoes. We have identified and characterized a mutation in dengue virus type 4 (DEN4) that decreases the ability of the virus to infect mosquitoes. A panel of 1248 mutagenized virus clones generated previously by chemical mutagenesis was screened for decreased replication in mosquito C6/36 cells but efficient replication in simian Vero cells. One virus met these criteria and contained a single coding mutation: a C-to-U mutation at nucleotide 7129 resulting in a Pro-to-Leu change in amino acid 101 of the nonstructural 4B gene (NS4B P101L). This mutation results in decreased replication in C6/36 cells relative to wild-type DEN4, decreased infectivity for mosquitoes, enhanced replication in Vero and human HuH-7 cells, and enhanced replication in SCID mice implanted with HuH-7 cells (SCID-HuH-7 mice). A recombinant DEN4 virus (rDEN4) bearing this mutation exhibited the same set of phenotypes. Addition of the NS4B P101L mutation to rDEN4 bearing a 30 nucleotide deletion (Δ30) decreased the ability of the double-mutant virus to infect mosquitoes but increased its ability to replicate in SCID-HuH-7 mice. Although the NS4B P101L mutation decreases infectivity of DEN4 for mosquitoes, its ability to enhance replication in SCID-HuH-7 mice suggests that it might not be advantageous to include this specific mutation in an rDEN4 vaccine. The opposing effects of the NS4B P101L mutation in mosquito and vertebrate systems suggest that the NS4B protein is involved in maintaining the balance between efficient replication in the mosquito vector and the human host

    Letter to the Editor : Sylvatic Dengue Viruses Share the Pathogenic Potential of Urban/Endemic Dengue Viruses

    Get PDF
    Dengue virus (DENV) exists in both sylvatic and urban/endemic ecotypes (15), and the potential for emergence of sylvatic strains has become a focus of research. Recently Mota and Rico-Hesse (10) attempted to evaluate the pathogenic potential of viruses belonging to different genetic subgroups of DENV serotype 2 (DENV-2). Based on the viremia levels and erythema index profiles of one sylvatic genotype and three (Asian, American, and Indian) urban/endemic genotypes evaluated using the NOD-scid IL2rÎłnull humanized mouse model, the authors concluded that sylvatic DENV-2 viruses possess a reduced pathogenic potential compared to strains belonging to urban/endemic DENV-2 genotypes. However, these conclusions ignore both patterns in their own data and a wealth of published ex vivo, in vivo, and epidemiological evidence collected over the past 40 years

    Design catalogue for eco-engineering of coastal artificial structures:a multifunctional approach for stakeholders and end-users

    Get PDF
    Coastal urbanisation, energy extraction, food production, shipping and transportation have led to the global proliferation of artificial structures within the coastal and marine environments (sensu “ocean sprawl”), with subsequent loss of natural habitats and biodiversity. To mitigate and compensate impacts of ocean sprawl, the practice of ecoengineering of artificial structures has been developed over the past decade. Eco-engineering aims to create sustainable ecosystems that integrate human society with the natural environment for the benefit of both. The science of eco-engineering has grown markedly, yet synthesis of research into a user-friendly and practitioner-focused format is lacking. Feedback from stakeholders has repeatedly stated that a “photo user guide” or “manual” covering the range of eco-engineering options available for artificial structures would be beneficial. However, a detailed and structured “user guide” for eco-engineering in coastal and marine environments is not yet possible; therefore we present an accessible review and catalogue of trialled eco-engineering options and a summary of guidance for a range of different structures tailored for stakeholders and end-users as the first step towards a structured manual. This work can thus serve as a potential template for future eco-engineering guides. Here we provide suggestions for potential eco-engineering designs to enhance biodiversity and ecosystem functioning and services of coastal artificial structures with the following structures covered: (1) rock revetment, breakwaters and groynes composed of armour stones or concrete units; (2) vertical and sloping seawalls; (3) over-water structures (i.e., piers) and associated support structures; and (4) tidal river walls
    • …
    corecore