16 research outputs found

    Mental Health Problem or Workplace Problem or Something Else: What contributes to Work Perception?

    Get PDF
    Work perception is an important predictor for work ability and therefore of interest for rehabilitation. Until now it is unclear to which extent different psychological aspects explain work perception. This study investigates in which way workplace problems on the one hand, and mental health and coping on the other hand, contribute to work perception. A heterogeneous sample of 384 persons in working age with and without mental health problems was recruited. Participants gave self-reports on workplace problems, mental health problems, work-coping, work-anxiety, and work perception. Persons with mental health problems and workplace problems (M+W) perceive the highest degree of work demands, followed by persons with workplace problems but without mental health problems (NM+W). Work-anxiety appeared as the strongest factor explaining perception of high work demands, whereas general mental health problems did not contribute significantly to variance explanation. Persons with specific mental health problems in terms of work-anxiety may be expected to perceive higher work demands. They may be detected when asking for work perception, e.g. within the frame of return-to-work interventions in rehabilitation, or in occupational health settings by mental hazard analysis

    Elizabethkingia miricolainfection in multiple anuran species

    Get PDF
    This report describes an outbreak of Elizabethkingia miricola in northern leopard frogs (Lithobates pipiens) and three other species of frogs and toads held in captivity in Germany. The authors examine several treatment options and underline the difficulties in treating larger numbers of individuals with antimicrobials applied through bathing. Whole genome sequencing of three bacterial isolates emphasizes their relatedness to other frog isolates and leads us to conclude that E. miricola is an emerging and difficult to treat pathogen with a broad host range across anuran species. Moreover, ambiguities in identification of flavobacteria associated with disease in frogs reported in the literature make it seem possible that E. miricola has been overlooked as an anuran pathogen in the past

    Human IRF1 governs macrophagic IFN-γ immunity to mycobacteria

    Get PDF
    Inborn errors of human IFN-γ-dependent macrophagic immunity underlie mycobacterial diseases, whereas inborn errors of IFN-α/β-dependent intrinsic immunity underlie viral diseases. Both types of IFNs induce the transcription factor IRF1. We describe unrelated children with inherited complete IRF1 deficiency and early-onset, multiple, life-threatening diseases caused by weakly virulent mycobacteria and related intramacrophagic pathogens. These children have no history of severe viral disease, despite exposure to many viruses, including SARS-CoV-2, which is life-threatening in individuals with impaired IFN-α/β immunity. In leukocytes or fibroblasts stimulated in vitro, IRF1-dependent responses to IFN-γ are, both quantitatively and qualitatively, much stronger than those to IFN-α/β. Moreover, IRF1-deficient mononuclear phagocytes do not control mycobacteria and related pathogens normally when stimulated with IFN-γ. By contrast, IFN-α/β-dependent intrinsic immunity to nine viruses, including SARS-CoV-2, is almost normal in IRF1-deficient fibroblasts. Human IRF1 is essential for IFN-γ-dependent macrophagic immunity to mycobacteria, but largely redundant for IFN-α/β-dependent antiviral immunity

    An immune cell spray (ICS) formulation allows for the delivery of functional monocyte/macrophages

    Get PDF
    Abstract Macrophages are key cells of the innate immune system and act as tissue resident macrophages (TRMs) in the homeostasis of various tissues. Given their unique functions and therapeutic use as well as the feasibility to derive macrophages in vitro from hematopoietic stem cell (HSC) sources, we propose an “easy-to-use” immune cell spray (ICS) formulation to effectively deliver HSC-derived macrophages. To achieve this aim, we used classical pump spray devices to spray either the human myeloid cell line U937 or primary murine HSC-derived macrophages. For both cell types used, one puff could deliver cells with maintained morphology and functionality. Of note, cells tolerated the spraying process very well with a recovery of more than 90%. In addition, we used osmotic preconditioning to reduce the overall cell size of macrophages. While a 800 mosm hyperosmolar sucrose solution was able to reduce the cell size by 27%, we identified 600 mosm to be effective to reduce the cell size by 15% while maintaining macrophage morphology and functionality. Using an isolated perfused rat lung preparation, the combinatorial use of the ICS with preconditioned and genetically labeled U937 cells allowed the intra-pulmonary delivery of cells, thus paving the way for a new cell delivery platform

    Patient iPSC-Derived Macrophages to Study Inborn Errors of the IFN-γ Responsive Pathway.

    No full text
    nterferon γ (IFN-γ) was shown to be a macrophage activating factor already in 1984. Consistently, inborn errors of IFN-γ immunity underlie Mendelian Susceptibility to Mycobacterial Disease (MSMD). MSMD is characterized by genetic predisposition to disease caused by weakly virulent mycobacterial species. Paradoxically, macrophages from patients with MSMD were little tested. Here, we report a disease modeling platform for studying IFN-γ related pathologies using macrophages derived from patient specific induced pluripotent stem cells (iPSCs). We used iPSCs from patients with autosomal recessive complete- and partial IFN-γR2 deficiency, partial IFN-γR1 deficiency and complete STAT1 deficiency. Macrophages from all patient iPSCs showed normal morphology and IFN-γ-independent functionality like phagocytic uptake of bioparticles and internalization of cytokines. For the IFN-γ-dependent functionalities, we observed that the deficiencies played out at various stages of the IFN-γ pathway, with the complete IFN-γR2 and complete STAT1 deficient cells showing the most severe phenotypes, in terms of upregulation of surface markers and induction of downstream targets. Although iPSC-derived macrophages with partial IFN-γR1 and IFN-γR2 deficiency still showed residual induction of downstream targets, they did not reduce the mycobacterial growth when challenged with Bacillus Calmette-Guérin. Taken together, we report a disease modeling platform to study the role of macrophages in patients with inborn errors of IFN-γ immunity

    Human Lentiviral Gene Therapy Restores the Cellular Phenotype of Autosomal Recessive Complete IFN-γR1 Deficiency.

    No full text
    Autosomal recessive (AR) complete interferon-γ receptor 1 (IFN-γR1) deficiency, also known as one genetic etiology of Mendelian susceptibility to mycobacterial disease (MSMD), is a life-threatening congenital disease leading to premature death. Affected patients present a pathognomonic predisposition to recurrent and severe infections with environmental mycobacteria or the Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine. Current therapeutic options are limited to antibiotic treatment and hematopoietic stem cell transplantation, however with poor outcome. Given the clinical success of gene therapy, we introduce the first lentiviral-based gene therapy approach to restore expression and function of the human IFN-γR-downstream signaling cascade. In our study, we developed lentiviral vectors constitutively expressing the human IFN-γR1 and demonstrate stable transgene expression without interference with cell viability and proliferation in transduced human hematopoietic cells. Using an IFN-γR1-deficient HeLa cell model, we show stable receptor reconstitution and restored IFN-γR1 signaling without adverse effect on cell functionality. Transduction of both SV40-immortalized and primary fibroblasts derived from IFN-γR1-deficient MSMD patients was able to recover IFN-γR1 expression and restore type II IFN signaling upon stimulation with IFN-γ. In summary, we highlight lentiviral vectors to correct the IFN-γ mediated immunity and present the first gene therapy approach for patients suffering from AR complete IFN-γR1 deficiency

    Patient iPSC-Derived Macrophages to Study Inborn Errors of the IFN-γ Responsive Pathway

    No full text
    Interferon γ (IFN-γ) was shown to be a macrophage activating factor already in 1984. Consistently, inborn errors of IFN-γ immunity underlie Mendelian Susceptibility to Mycobacterial Disease (MSMD). MSMD is characterized by genetic predisposition to disease caused by weakly virulent mycobacterial species. Paradoxically, macrophages from patients with MSMD were little tested. Here, we report a disease modeling platform for studying IFN-γ related pathologies using macrophages derived from patient specific induced pluripotent stem cells (iPSCs). We used iPSCs from patients with autosomal recessive complete- and partial IFN-γR2 deficiency, partial IFN-γR1 deficiency and complete STAT1 deficiency. Macrophages from all patient iPSCs showed normal morphology and IFN-γ-independent functionality like phagocytic uptake of bioparticles and internalization of cytokines. For the IFN-γ-dependent functionalities, we observed that the deficiencies played out at various stages of the IFN-γ pathway, with the complete IFN-γR2 and complete STAT1 deficient cells showing the most severe phenotypes, in terms of upregulation of surface markers and induction of downstream targets. Although iPSC-derived macrophages with partial IFN-γR1 and IFN-γR2 deficiency still showed residual induction of downstream targets, they did not reduce the mycobacterial growth when challenged with Bacillus Calmette–Guérin. Taken together, we report a disease modeling platform to study the role of macrophages in patients with inborn errors of IFN-γ immunity

    Bioreactor-based mass production of human iPSC-derived macrophages enables immunotherapies against bacterial airway infections

    No full text
    Pulmonary infections constitute a substantial health problem worldwide. Here the authors show that phagocytes similar to primitive macrophages can be generated from human induced pluripotent stem cells, by the use of industry-compatible, stirred-tank bioreactors, and applied as a cell-based therapy to treat acute bacterial infections in mice

    Impaired IFNγ-signaling and mycobacterial clearance in IFNγR1-deficient human iPSC-derived macrophages

    Get PDF
    Mendelian susceptibility to mycobacterial disease (MSMD) is caused by inborn errors of interferon gamma (IFNγ) immunity and is characterized by severe infections by weakly virulent mycobacteria. Although IFNγ is the macrophage-activating factor, macrophages from these patients have never been studied. We demonstrate the generation of heterozygous and compound heterozygous (iMSMD-cohet) induced pluripotent stem cells (iPSCs) from a single chimeric patient, who suffered from complete autosomal recessive IFNγR1 deficiency and received bone-marrow transplantation. Loss of IFNγR1 expression had no influence on the macrophage differentiation potential of patient-specific iPSCs. In contrast, lack of IFNγR1 in iMSMD-cohet macrophages abolished IFNγ-dependent phosphorylation of STAT1 and induction of IFNγ-downstream targets such as IRF-1, SOCS-3, and IDO. As a consequence, iMSMD-cohet macrophages show impaired upregulation of HLA-DR and reduced intracellular killing of Bacillus Calmette-Guérin. We provide a disease-modeling platform that might be suited to investigate novel treatment options for MSMD and to gain insights into IFNγ signaling in macrophages
    corecore