10 research outputs found

    Identification of 9 uterine genes that are regulated during mouse pregnancy and exhibit abnormal levels in the cyclooxygenase-1 knockout mouse

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Preterm birth is the leading cause of all infant mortality. In 2004, 12.5% of all births were preterm. In order to understand preterm labor, we must first understand normal labor. Since many of the myometrial changes that occur during pregnancy are similar in mice and humans and mouse gestation is short, we have studied the uterine genes that change in the mouse during pregnancy. Here, we used microarray analysis to identify uterine genes in the gravid mouse that are differentially regulated in the cyclooxygenase-1 knockout mouse model of delayed parturition.</p> <p>Methods</p> <p>Gestational d18.0 uteri (n = 4) were collected from pregnant wild-type and cyclooxygenase-1 knockout mice. Part of the uterus was used for frozen sections and RNA was isolated from the remainder. Microarray analysis was performed at the Indiana University School of Medicine Genomic Core and analyzed using the Microarray Data Portal. Northern analysis was performed to confirm microarray data and the genes localized in the gravid uterus by in situ hybridization.</p> <p>Results</p> <p>We identified 277 genes that are abnormally expressed in the gravid d18.0 cyclooxygenase-1 knockout mouse. Nine of these genes are also regulated in the normal murine uterus during the last half of gestation. Many of these genes are involved in the immune response, consistent with an important role of the immune system in parturition. Expression of 4 of these genes; arginase I, IgJ, Tnfrsf9 and troponin; was confirmed by Northern analysis to be mis-regulated during pregnancy in the knockout mouse. In situ hybridization of these genes demonstrated a similar location in the gravid wild-type and Cox-1 knockout mouse uteri.</p> <p>Conclusion</p> <p>To our knowledge, this is the first work to demonstrate the uterine location of these 4 genes in the mouse during late pregnancy. There are several putative transcription factor binding sites that are shared by many of the 9 genes identified here including; estrogen and progesterone response elements and Ets binding sites. In summary, this work identifies 9 uterine murine genes that may play a role in parturition. The function of these genes is consistent with an important role of the immune system in parturition.</p

    Effect of Metformin Added to Insulin on Glycemic Control Among Overweight/Obese Adolescents With Type 1 Diabetes: A Randomized Clinical Trial

    Get PDF
    Importance Previous studies assessing the effect of metformin on glycemic control in adolescents with type 1 diabetes have produced inconclusive results. Objective To assess the efficacy and safety of metformin as an adjunct to insulin in treating overweight adolescents with type 1 diabetes. Design, Setting, and Participants Multicenter (26 pediatric endocrinology clinics), double-blind, placebo-controlled randomized clinical trial involving 140 adolescents aged 12.1 to 19.6 years (mean [SD] 15.3 [1.7] years) with mean type 1 diabetes duration 7.0 (3.3) years, mean body mass index (BMI) 94th (4) percentile, mean total daily insulin 1.1 (0.2) U/kg, and mean HbA1c 8.8% (0.7%). Interventions Randomization to receive metformin (n = 71) (≤2000 mg/d) or placebo (n = 69). Main Outcomes and Measures Primary outcome was change in HbA1c from baseline to 26 weeks adjusted for baseline HbA1c. Secondary outcomes included change in blinded continuous glucose monitor indices, total daily insulin, BMI, waist circumference, body composition, blood pressure, and lipids. Results Between October 2013 and February 2014, 140 participants were enrolled. Baseline HbA1c was 8.8% in each group. At 13-week follow-up, reduction in HbA1c was greater with metformin (−0.2%) than placebo (0.1%; mean difference, −0.3% [95% CI, −0.6% to 0.0%]; P = .02). However, this differential effect was not sustained at 26-week follow up when mean change in HbA1c from baseline was 0.2% in each group (mean difference, 0% [95% CI, −0.3% to 0.3%]; P = .92). At 26-week follow-up, total daily insulin per kg of body weight was reduced by at least 25% from baseline among 23% (16) of participants in the metformin group vs 1% (1) of participants in the placebo group (mean difference, 21% [95% CI, 11% to 32%]; P = .003), and 24% (17) of participants in the metformin group and 7% (5) of participants in the placebo group had a reduction in BMI z score of 10% or greater from baseline to 26 weeks (mean difference, 17% [95% CI, 5% to 29%]; P = .01). Gastrointestinal adverse events were reported by more participants in the metformin group than in the placebo group (mean difference, 36% [95% CI, 19% to 51%]; P < .001). Conclusions and Relevance Among overweight adolescents with type 1 diabetes, the addition of metformin to insulin did not improve glycemic control after 6 months. Of multiple secondary end points, findings favored metformin only for insulin dose and measures of adiposity; conversely, use of metformin resulted in an increased risk for gastrointestinal adverse events. These results do not support prescribing metformin to overweight adolescents with type 1 diabetes to improve glycemic control

    Racial Differences in the Relationship of Glucose Concentrations and Hemoglobin A1c Levels

    No full text
    Background: Debate exists as to whether the higher hemoglobin A1c (HbA1c) levels observed in black persons than in white persons are due to worse glycemic control or racial differences in the glycation of hemoglobin. Objective: To determine whether a racial difference exists in the relationship of mean glucose and HbA1c. Design: Prospective, 12-week observational study. Setting: 10 diabetes centers in the United States. Participants: 104 black persons and 104 white persons aged 8 years or older who had had type 1 diabetes for at least 2 years and had an HbA1c level of 6.0% to 12.0%. Measurements: Mean glucose concentration, measured by using continuous glucose monitoring and compared by race with HbA1c, glycated albumin, and fructosamine values. Results: The mean HbA1c level was 9.1% in black persons and 8.3% in white persons. For a given HbA1c level, the mean glucose concentration was significantly lower in black persons than in white persons (P = 0.013), which was reflected in mean HbA1c values in black persons being 0.4 percentage points (95% CI, 0.2 to 0.6 percentage points) higher than those in white persons for a given mean glucose concentration. In contrast, no significant racial differences were found in the relationship of glycated albumin and fructosamine levels with the mean glucose concentration (P \u3e 0.20 for both comparisons). Limitation: There were too few participants with HbA1c levels less than 6.5% to generalize the results to such individuals. Conclusion: On average, HbA1c levels overestimate the mean glucose concentration in black persons compared with white persons, possibly owing to racial differences in the glycation of hemoglobin. However, because race only partially explains the observed HbA1c differences between black persons and white persons, future research should focus on identifying and modifying barriers impeding improved glycemic control in black persons with diabetes. Primary Funding Source: Helmsley Charitable Trust

    Severe hypoglycemia and diabetic ketoacidosis in adults with type 1 diabetes: results from the T1D Exchange clinic registry

    No full text

    Obesity in Youth with Type 1 Diabetes in Germany, Austria, and the United States

    No full text
    corecore