77 research outputs found

    Developmental Pathways in CAVD

    Get PDF

    Loss of β-catenin promotes chondrogenic differentiation of aortic valve interstitial cells

    Get PDF
    OBJECTIVE: The Wnt/β-catenin signaling pathway has been implicated in human heart valve disease and is required for early heart valve formation in mouse and zebrafish. However, the specific functions of Wnt/β-catenin signaling activity in heart valve maturation and maintenance in adults have not been determined previously. APPROACH AND RESULTS: Here, we show that Wnt/β-catenin signaling inhibits Sox9 nuclear localization and proteoglycan expression in cultured chicken embryo aortic valves. Loss of β-catenin in vivo in mice, using Periostin(Postn)Cre-mediated tissue-restricted loss of β-catenin (Ctnnb1) in valvular interstitial cells, leads to the formation of aberrant chondrogenic nodules and induction of chondrogenic gene expression in adult aortic valves. These nodular cells strongly express nuclear Sox9 and Sox9 downstream chondrogenic extracellular matrix genes, including Aggrecan, Col2a1, and Col10a1. Excessive chondrogenic proteoglycan accumulation and disruption of stratified extracellular matrix maintenance in the aortic valve leaflets are characteristics of myxomatous valve disease. Both in vitro and in vivo data demonstrate that the loss of Wnt/β-catenin signaling leads to increased nuclear expression of Sox9 concomitant with induced expression of chondrogenic extracellular matrix proteins. CONCLUSIONS: β-Catenin limits Sox9 nuclear localization and inhibits chondrogenic differentiation during valve development and in adult aortic valve homeostasis

    Pathological Investigation of Congenital Bicuspid Aortic Valve Stenosis, Compared with Atherosclerotic Tricuspid Aortic Valve Stenosis and Congenital Bicuspid Aortic Valve Regurgitation

    Get PDF
    Congenital bicuspid aortic valve (CBAV) is the main cause of aortic stenosis (AS) in young adults. However, the histopathological features of AS in patients with CBAV have not been fully investigated.We examined specimens of aortic valve leaflets obtained from patients who had undergone aortic valve re/placement at our institution for severe AS with CBAV (n = 24, CBAV-AS group), severe AS with tricuspid aortic valve (n = 24, TAV-AS group), and severe aortic regurgitation (AR) with CBAV (n = 24, CBAV-AR group). We compared the histopathological features among the three groups. Pathological features were classified using semi-quantitative methods (graded on a scale 0 to 3) by experienced pathologists without knowledge of the patients' backgrounds. The severity of inflammation, neovascularization, and calcium and cholesterol deposition did not differ between the CBAV-AS and TAV-AS groups, and these four parameters were less marked in the CBAV-AR group than in the CBAV-AS (all p<0.01). Meanwhile, the grade of valvular fibrosis was greater in the CBAV-AS group, compared with the TAV-AS and CBAV-AR groups (both p<0.01). In AS patients, thickness of fibrotic lesions was greater on the aortic side than on the ventricular side (both p<0.01). Meanwhile, thickness of fibrotic lesions was comparable between the aortic and ventricular sides in CBAV-AR patients (p = 0.35).Valvular fibrosis, especially on the aortic side, was greater in patients with CBAV-AS than in those without, suggesting a difference in the pathogenesis of AS between CBAV and TAV

    Twist1 Directly Regulates Genes That Promote Cell Proliferation and Migration in Developing Heart Valves

    Get PDF
    Twist1, a basic helix-loop-helix transcription factor, is expressed in mesenchymal precursor populations during embryogenesis and in metastatic cancer cells. In the developing heart, Twist1 is highly expressed in endocardial cushion (ECC) valve mesenchymal cells and is down regulated during valve differentiation and remodeling. Previous studies demonstrated that Twist1 promotes cell proliferation, migration, and expression of primitive extracellular matrix (ECM) molecules in ECC mesenchymal cells. Furthermore, Twist1 expression is induced in human pediatric and adult diseased heart valves. However, the Twist1 downstream target genes that mediate increased cell proliferation and migration during early heart valve development remain largely unknown. Candidate gene and global gene profiling approaches were used to identify transcriptional targets of Twist1 during heart valve development. Candidate target genes were analyzed for evolutionarily conserved regions (ECRs) containing E-box consensus sequences that are potential Twist1 binding sites. ECRs containing conserved E-box sequences were identified for Twist1 responsive genes Tbx20, Cdh11, Sema3C, Rab39b, and Gadd45a. Twist1 binding to these sequences in vivo was determined by chromatin immunoprecipitation (ChIP) assays, and binding was detected in ECCs but not late stage remodeling valves. In addition identified Twist1 target genes are highly expressed in ECCs and have reduced expression during heart valve remodeling in vivo, which is consistent with the expression pattern of Twist1. Together these analyses identify multiple new genes involved in cell proliferation and migration that are differentially expressed in the developing heart valves, are responsive to Twist1 transcriptional function, and contain Twist1-responsive regulatory sequences

    Troponin I gene regulation and the role of the muscle regulatory factors in muscle differentiation

    No full text
    During skeletal muscle development, approximately thirty genes encoding the contractile proteins and related gene products are transcriptionally activated as myoblasts differentiate into myofibers. One of these genes, the fast isoform of skeletal troponin I (TnI), is regulated primarily by an internal regulatory element (IRE) located in the first intron of the gene. The 148 bp IRE is a muscle-specific enhancer that contains three specific protein binding sites, each of which is necessary for TnI gene activation. The most 5\sp\prime of these binding regions contains a bHLH protein binding site consensus, or E-box, that has been shown to bind the muscle regulatory factors MyoD, myogenin, Myf-5, and MRF4. Sequences similar to the remaining sites are present in the regulatory elements of other contractile protein genes, but the transcription factors that bind these sites are uncharacterized. The three regions or sub-elements are interdependent, since mutation of any one site results in 3˘e\u3e80% loss in enhancer activity. Although MyoD, myogenin, Myf-5, and MRF4 each are involved in muscle determination and differentiation, the distinct roles of these proteins are unknown. A direct comparison of the abilities of these proteins to trans-activate the expression of contractile protein genes revealed that MyoD and myogenin are potent trans-activators of all genes tested. MRF4, however, was unable to trans-activate muscle-specific expression of any gene with the exception of cardiac α\alpha-actin. Transcriptional activation by each muscle regulatory factor is inhibited by basic fibroblast growth factor via a signal transduction pathway that may affect the muscle regulatory factors post-translationally. The ability of the muscle regulatory factors to activate contractile protein gene expression is dependent on the sequence of the E-box binding site. Replacement of the TnI IRE E-box site with the corresponding E-box sites from other contractile protein genes significantly affects the ability of MyoD to activate TnI gene transcription. Thus specific interactions between distinct contractile protein gene regulatory elements and a variety of transcription factors, including the muscle regulatory factors, govern transcriptional activation during muscle differentiation

    DiGeorge Syndrome, Tbx1, and Retinoic Acid Signaling Come Full Circle

    No full text

    Transcriptional Control of Cell Lineage Development in Epicardium-Derived Cells

    No full text
    Epicardial derivatives, including vascular smooth muscle cells and cardiac fibroblasts, are crucial for proper development of the coronary vasculature and cardiac fibrous matrix, both of which support myocardial integrity and function in the normal heart. Epicardial formation, epithelial-to-mesenchymal transition (EMT), and epicardium-derived cell (EPDC) differentiation are precisely regulated by complex interactions among signaling molecules and transcription factors. Here we review the roles of critical transcription factors that are required for specific aspects of epicardial development, EMT, and EPDC lineage specification in development and disease. Epicardial cells and subepicardial EPDCs express transcription factors including Wt1, Tcf21, Tbx18, and Nfatc1. As EPDCs invade the myocardium, epicardial progenitor transcription factors such as Wt1 are downregulated. EPDC differentiation into SMC and fibroblast lineages is precisely regulated by a complex network of transcription factors, including Tcf21 and Tbx18. These and other transcription factors also regulate epicardial EMT, EPDC invasion, and lineage maturation. In addition, there is increasing evidence that epicardial transcription factors are reactivated with adult cardiac ischemic injury. Determining the function of reactivated epicardial cells in myocardial infarction and fibrosis may improve our understanding of the pathogenesis of heart disease
    • …
    corecore