182 research outputs found

    Fyn and PTP-PEST–mediated Regulation of Wiskott-Aldrich Syndrome Protein (WASp) Tyrosine Phosphorylation Is Required for Coupling T Cell Antigen Receptor Engagement to WASp Effector Function and T Cell Activation

    Get PDF
    Involvement of the Wiskott-Aldrich syndrome protein (WASp) in promoting cell activation requires its release from autoinhibitory structural constraints and has been attributed to WASp association with activated cdc42. Here, however, we show that T cell development and T cell receptor (TCR)-induced proliferation and actin polymerization proceed normally in WASp−/− mice expressing a WASp transgene lacking the cdc42 binding domain. By contrast, mutation of tyrosine residue Y291, identified here as the major site of TCR-induced WASp tyrosine phosphorylation, abrogated induction of WASp tyrosine phosphorylation and its effector activities, including nuclear factor of activated T cell transcriptional activity, actin polymerization, and immunological synapse formation. TCR-induced WASp tyrosine phosphorylation was also disrupted in T cells lacking Fyn, a kinase shown here to bind, colocalize with, and phosphorylate WASp. By contrast, WASp was tyrosine dephosphorylated by protein tyrosine phosphatase (PTP)-PEST, a tyrosine phosphatase shown here to interact with WASp via proline, serine, threonine phosphatase interacting protein (PSTPIP)1 binding. Although Fyn enhanced WASp-mediated Arp2/3 activation and was required for synapse formation, PTP-PEST combined with PSTPIP1 inhibited WASp-driven actin polymerization and synapse formation. These observations identify key roles for Fyn and PTP-PEST in regulating WASp and imply that inducible WASp tyrosine phosphorylation can occur independently of cdc42 binding, but unlike the cdc42 interaction, is absolutely required for WASp contributions to T cell activation

    SHP-1 negatively regulates neuronal survival by functioning as a TrkA phosphatase

    Get PDF
    Nerve growth factor (NGF) mediates the survival and differentiation of neurons by stimulating the tyrosine kinase activity of the TrkA/NGF receptor. Here, we identify SHP-1 as a phosphotyrosine phosphatase that negatively regulates TrkA. SHP-1 formed complexes with TrkA at Y490, and dephosphorylated it at Y674/675. Expression of SHP-1 in sympathetic neurons induced apoptosis and TrkA dephosphorylation. Conversely, inhibition of endogenous SHP-1 with a dominant-inhibitory mutant stimulated basal tyrosine phosphorylation of TrkA, thereby promoting NGF-independent survival and causing sustained and elevated TrkA activation in the presence of NGF. Mice lacking SHP-1 had increased numbers of sympathetic neurons during the period of naturally occurring neuronal cell death, and when cultured, these neurons survived better than wild-type neurons in the absence of NGF. These data indicate that SHP-1 can function as a TrkA phosphatase, controlling both the basal and NGF-regulated level of TrkA activity in neurons, and suggest that SHP-1 regulates neuron number during the developmental cell death period by directly regulating TrkA activity

    Data for Genetic Analysis Workshop (GAW) 15 Problem 2, genetic causes of rheumatoid arthritis and associated traits

    Get PDF
    For Genetic Analysis Workshop 15 Problem 2, we organized data from several ongoing studies designed to identify genetic and environmental risk factors for rheumatoid arthritis. Data were derived from the North American Rheumatoid Arthritis Consortium (NARAC), collaboration among Canadian researchers, the European Consortium on Rheumatoid Arthritis Families (ECRAF), and investigators from Manchester, England. All groups used a common standard for defining rheumatoid arthritis, but NARAC also further selected for a more severe phenotype in the probands. Genotyping and family structures for microsatellite-based linkage analysis were provided from all centers. In addition, all centers but ECRAF have genotyped families for linkage analysis using SNPs and these data were additionally provided. NARAC also had additional data from a dense genotyping analysis of a region of chromosome 18 and results from candidate gene studies, which were provided. Finally, smoking influences risk for rheumatoid arthritis, and data were provided from the NARAC study on this behavior as well as some additional phenotypes measuring severity. Several questions could be evaluated using the data that were provided. These include comparing linkage analysis using single-nucleotide polymorphisms versus microsatellites and identifying credible regions of linkage outside the HLA region on chromosome 6p13, which has been extensively documented; evaluating the joint effects of smoking with genetic factors; and identifying more homogenous subsets of families for whom genetic susceptibility might be stronger, so that linkage and association studies may be more efficiently conducted

    Significance of left ventricular apical-basal muscle bundle identified by cardiovascular magnetic resonance imaging in patients with hypertrophic cardiomyopathy

    Get PDF
    Aims Cardiovascular magnetic resonance (CMR) has improved diagnostic and management strategies in hypertrophic cardiomyopathy (HCM) by expanding our appreciation for the diverse phenotypic expression. We sought to characterize the prevalence and clinical significance of a recently identified accessory left ventricular (LV) muscle bundle extending from the apex to the basal septum or anterior wall (i.e. apical-basal). Methods and results CMR was performed in 230 genotyped HCM patients (48 ± 15 years, 69% male), 30 genotype-positive/phenotype-negative (G+/P−) family members (32 ± 15 years, 30% male), and 126 controls. Left ventricular apical-basal muscle bundle was identified in 145 of 230 (63%) HCM patients, 18 of 30 (60%) G+/P− family members, and 12 of 126 (10%) controls (G+/P− vs. controls; P < 0.01). In HCM patients, the prevalence of an apical-basal muscle bundle was similar among those with disease-causing sarcomere mutations compared with patients without mutation (64 vs. 62%; P = 0.88). The presence of an LV apical-basal muscle bundle was not associated with LV outflow tract obstruction (P = 0.61). In follow-up, 33 patients underwent surgical myectomy of whom 22 (67%) were identified to have an accessory LV apical-basal muscle bundle, which was resected in all patients. Conclusion Apical-basal muscle bundles are a unique myocardial structure commonly present in HCM patients as well as in G+/P− family members and may represent an additional morphologic marker for HCM diagnosis in genotype-positive statu

    Genetic Interaction Analysis Among Oncogenesis-Related Genes Revealed Novel Genes and Networks in Lung Cancer Development

    Get PDF
    The development of cancer is driven by the accumulation of many oncogenesis-related genetic alterationsand tumorigenesis is triggered by complex networks of involved genes rather than independent actions. To explore the epistasis existing among oncogenesis-related genes in lung cancer development, we conducted pairwise genetic interaction analyses among 35,031 SNPs from 2027 oncogenesis-related genes. The genotypes from three independent genome-wide association studies including a total of 24,037 lung cancer patients and 20,401 healthy controls with Caucasian ancestry were analyzed in the study. Using a two-stage study design including discovery and replication studies, and stringent Bonferroni correction for multiple statistical analysis, we identified significant genetic interactions between SNPs in RGL1:RAD51B (OR=0.44, p value=3.27x10-11 in overall lung cancer and OR=0.41, p value=9.71x10-11 in non-small cell lung cancer), SYNE1:RNF43 (OR=0.73, p value=1.01x10-12 in adenocarcinoma) and FHIT:TSPAN8 (OR=1.82, p value=7.62x10-11 in squamous cell carcinoma) in our analysis. None of these genes have been identified from previous main effect association studies in lung cancer. Further eQTL gene expression analysis in lung tissues provided information supporting the functional role of the identified epistasis in lung tumorigenesis. Gene set enrichment analysis revealed potential pathways and gene networks underlying molecular mechanisms in overall lung cancer as well as histology subtypes development. Our results provide evidence that genetic interactions between oncogenesis-related genes play an important role in lung tumorigenesis and epistasis analysis, combined with functional annotation, provides a valuable tool for uncovering functional novel susceptibility genes that contribute to lung cancer development by interacting with other modifier genes
    • …
    corecore