213 research outputs found

    Investigations of potential transfer of Campylobacter coli between hogs and turkeys.

    Get PDF
    Hogs are often grown in close proximity to turkey farms in North Cartolina, and the potential exists for transfer of pathogens, including Campylobacter, from one host animal to another. The aim of this study was to obtain evidence for possible transfer of Campylobacter coli from hogs to turkeys, or vice versa. Strains from four paired hog and turkey farms were isolated and characterized in terms of their antibiotic resistance profiles, and by molecular subtyping utilizing PCR-RFLP of flaA. Certain strains were found to be shared between hogs and turkeys, suggesting possible transfer. In spite of identical molecular subtypes, such strains commonly differed in antibiotic resistance profiles. The results are consistent with the hypothesis that strains of C. coli may transfer between hogs and turkeys, or that certain strain subtypes may independently colonize these animals through unidentified reservoirs

    Global Distribution of Outbreaks of Water-Associated Infectious Diseases

    Get PDF
    Water is essential for maintaining life on Earth but can also serve as a media for many pathogenic organisms, causing a high disease burden globally. However, how the global distribution of water-associated infectious pathogens/diseases looks like and how such distribution is related to possible social and environmental factors remain largely unknown. In this study, we compiled a database on distribution, biology, and epidemiology of water-associated infectious diseases and collected data on population density, annual accumulated temperature, surface water areas, average annual precipitation, and per capita GDP at the global scale. From the database we extracted reported outbreak events from 1991 to 2008 and developed models to explore the association between the distribution of these outbreaks and social and environmental factors. A total of1,428 outbreaks had been reported and this number only reflected ‘the tip of the iceberg’ of the much bigger problem. We found that the outbreaks of water-associated infectious diseases are significantly correlated with social and environmental factors and that all regions are affected disproportionately by different categories of diseases. Relative risk maps are generated to show ‘hotspots’ of risks for different diseases. Despite certain limitations, the findings may be instrumental for future studies and prioritizing health resources

    High Density Microarray Analysis Reveals New Insights into Genetic Footprints of Listeria monocytogenes Strains Involved in Listeriosis Outbreaks

    Get PDF
    Listeria monocytogenes, a foodborne bacterial pathogen, causes invasive and febrile gastroenteritis forms of listeriosis in humans. Both invasive and febrile gastroenteritis listeriosis is caused mostly by serotypes 1/2a, 1/2b and 4b strains. The outbreak strains of serotype 1/2a and 4b could be further classified into several epidemic clones but the genetic bases for the diverse pathophysiology have been unsuccessful. DNA microarray provides an important tool to scan the entire genome for genetic signatures that may distinguish the L. monocytogenes strains belonging to different outbreaks. We have designed a pan-genomic microarray chip (Listeria GeneChip) containing sequences from 24 L. monocytogenes strains. The chip was designed to identify the presence/absence of genomic sequences, analyze transcription profiles and identify SNPs. Analysis of the genomic profiles of 38 outbreak strains representing 1/2a, 1/2b and 4b serotypes, revealed that the strains formed distinct genetic clusters adhering to their serotypes and epidemic clone types. Although serologically 1/2a and 1/b strains share common antigenic markers microarray analysis revealed that 1/2a strains are further apart from the closely related 1/2b and 4b strains. Within any given serotype and epidemic clone type the febrile gastroenteritis and invasive strains can be further distinguished based on several genetic markers including large numbers of phage genome, and intergenic sequences. Our results showed that the microarray-based data can be an important tool in characterization of L. monocytogenes strains involved in both invasive and gastroenteritis outbreaks. The results for the first time showed that the serotypes and epidemic clones are based on extensive pan-genomic variability and the 1/2b and 4bstrains are more closely related to each other than the 1/2a strains. The data also supported the hypothesis that the strains causing these two diverse outbreaks are genotypically different and this finding might be important in understanding the pathophysiology of this organism

    Listeria pathogenesis and molecular virulence determinants

    Get PDF
    The gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a highly fatal opportunistic foodborne infection. Pregnant women, neonates, the elderly, and debilitated or immunocompromised patients in general are predominantly affected, although the disease can also develop in normal individuals. Clinical manifestations of invasive listeriosis are usually severe and include abortion, sepsis, and meningoencephalitis. Listeriosis can also manifest as a febrile gastroenteritis syndrome. In addition to humans, L. monocytogenes affects many vertebrate species, including birds. Listeria ivanovii, a second pathogenic species of the genus, is specific for ruminants. Our current view of the pathophysiology of listeriosis derives largely from studies with the mouse infection model. Pathogenic listeriae enter the host primarily through the intestine. The liver is thought to be their first target organ after intestinal translocation. In the liver, listeriae actively multiply until the infection is controlled by a cell-mediated immune response. This initial, subclinical step of listeriosis is thought to be common due to the frequent presence of pathogenic L. monocytogenes in food. In normal indivuals, the continual exposure to listerial antigens probably contributes to the maintenance of anti-Listeria memory T cells. However, in debilitated and immunocompromised patients, the unrestricted proliferation of listeriae in the liver may result in prolonged low-level bacteremia, leading to invasion of the preferred secondary target organs (the brain and the gravid uterus) and to overt clinical disease. L. monocytogenes and L. ivanovii are facultative intracellular parasites able to survive in macrophages and to invade a variety of normally nonphagocytic cells, such as epithelial cells, hepatocytes, and endothelial cells. In all these cell types, pathogenic listeriae go through an intracellular life cycle involving early escape from the phagocytic vacuole, rapid intracytoplasmic multiplication, bacterially induced actin-based motility, and direct spread to neighboring cells, in which they reinitiate the cycle. In this way, listeriae disseminate in host tissues sheltered from the humoral arm of the immune system. Over the last 15 years, a number of virulence factors involved in key steps of this intracellular life cycle have been identified. This review describes in detail the molecular determinants of Listeria virulence and their mechanism of action and summarizes the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listeria infection. This article provides an updated perspective of the development of our understanding of Listeria pathogenesis from the first molecular genetic analyses of virulence mechanisms reported in 1985 until the start of the genomic era of Listeria research

    An Improved Cloning Vector for Construction of Gene Replacements in Listeria monocytogenes

    No full text
    Listeria monocytogenes is a gram-positive, facultative intracellular bacterium implicated in severe food-borne illness (listeriosis) in humans. The construction of well-defined gene replacements in the genome of L. monocytogenes has been instrumental to several genetic studies of the virulence and other attributes of the organism. Construction of such mutations by currently available procedures, however, tends to be labor intensive, and gene replacement mutants are sometimes difficult to recover due to lack of direct selection for the construct. In this study we describe the construction and use of plasmid vector pGF-EM, which can be conjugatively transferred from Escherichia coli S17-1 to L. monocytogenes and which provides the genetic means for direct selection of gene replacements
    corecore