6 research outputs found

    Brown adipose tissue harbors a distinct sub-population of regulatory T cells.

    No full text
    Regulatory T (Treg) cells are critical determinants of both immune responses and metabolic control. Here we show that systemic ablation of Treg cells compromised the adaptation of whole-body energy expenditure to cold exposure, correlating with impairment in thermogenic marker gene expression and massive invasion of pro-inflammatory macrophages in brown adipose tissue (BAT). Indeed, BAT harbored a unique sub-set of Treg cells characterized by a unique gene signature. As these Treg cells respond to BAT activation upon cold exposure, this study defines a BAT-specific Treg sub-set with direct implications for the regulation of energy homeostasis in response to environmental stress

    Genotypical comparison of T<sub>reg</sub> and T<sub>conv</sub> cells isolated from brown adipose tissue (BAT) and spleen tissue (SPL) in cold- and warm-conditioned animals generated with an Illumina Mouse Expression Array.

    No full text
    <p>(A) Gene expression profiles comparing T<sub>reg</sub> (top) or T<sub>conv</sub> (bottom) cell populations between spleen and adipose tissue samples isolated from warm-conditioned animals (left) or between cells isolated from cold vs warm-conditioned animals (right). Numbers indicate genes either up- or downregulated more than 2-fold (cut-off: dotted line), with the number of significantly different (p<0.05) genes shown in brackets with an asterisk. (B) Volcano plot comparing gene expression and significance values between T<sub>reg</sub> and T<sub>conv</sub> genes isolated from BAT in warm-conditioned animals. Key up- or downregulated genes in T<sub>reg</sub> cells are annotated (Foxp3, Il10, Cxcl1/2, Tcf7, Ifng) and serve as quality control to the published consensus T<sub>reg</sub>-cell signature. (C) Hierarchical clustering of the top-30 upregulated genes and the top-10 downregulated genes in warm-conditioned brown adipose tissue T<sub>reg</sub> cells versus spleen T<sub>reg</sub> cells. (D) Comparison of BAT-T<sub>reg</sub>-specific genes with visceral adipose tissue (VAT)-specific genes. We first determined 430 genes to upregulated in BAT warm-conditioned T<sub>reg</sub> cells, with 222 genes being significantly altered (p<0.05). We then overlaid BAT T<sub>reg</sub>-upregulated genes with VAT T<sub>reg</sub> tissue specific expression gene data. 181 genes were matched between both microarary chips, with 169 genes also upregulated in VAT, and only 12 genes specific for BAT (left). The corresponding analysis of the 516 genes upregulated in cold BAT T<sub>reg</sub> cells versus warm spleen T<sub>reg</sub> cells revealed 194 genes to be significantly upregulated. 158 could be matched to VAT T<sub>reg</sub>-specific genes, of which 148 were VAT-specific, whereas only 10 were specific for BAT. P-values indicate the significance of overrepresentation of BAT T<sub>reg</sub>-specific genes in the VAT T<sub>reg</sub> signature. (E) Comparison of VAT-T<sub>reg</sub> specific genes on BAT warm (left) or BAT cold (right) gene signatures. Of 1839 genes specifically overexpressed in VAT T<sub>reg</sub> cells, 1059 were statistically significantly (p<0.05) upregulated. Of these 1059 genes, 829 were also detectable in the BAT T<sub>reg</sub> microarray. When comparing the VAT T<sub>reg</sub> signature to warm BAT T<sub>reg</sub> cells, 660 genes were overrepresented in VAT, whereas cold BAT T<sub>reg</sub> cells show 685 genes to be overrepresented in VAT.</p

    Physiological parameters.

    No full text
    <p>(A) Body weight (BW) and (B) adipose tissues weights of T<sub>reg</sub> cell-proficient (PBS) and T<sub>reg</sub> cell-deficient (DT) mice after cold exposure. BAT, brown adipose tissue; scWAT, subcutaneous white adipose tissue, aWAT, abdominal white adipose tissue. (C) Blood glucose, (D) serum non-estherified fatty acids (NEFA) and (E) serum triglycerides in PBS and DT mice. Values are mean ± SD (n = 9–10); *P<0.05 (Student’s t-test).</p

    Inflammatory status of adipose tissue.

    No full text
    <p>Real-time RT-PCR analysis of (A) brown adipose tissue (BAT) and (B) subcutaneous white adipose tissue of T<sub>reg</sub> cell-proficient (PBS) and T<sub>reg</sub> cell-deficient (DT) mice after cold exposure. Ucp1, uncoupling protein 1; Cidea,cell death-inducing DNA fragmentation factor, alpha subunit-like effector A; Dio2,deiodinase, iodothyronine, type II; Pparg, peroxisome proliferator-activated receptor gamma; Prdm16, PR domain containing 16; Cd68, Cd68 antigen; Ccl2,chemokine (C-C motif) ligand 2; Tnfa, tumor necrosis factor alpha; Ifng, interferon, gamma; Mrc1, mannose receptor, C type 1; Mgl1, macrophage galactose-type C-type lectin 1; Arg1,arginase 1; Il-10, interleukin 10; Il-4, interleukin 4. Data are mean ± SD (n = 9–10); *p<0.05 (Student’s t-test). (C) Representative hematoxylin and eosin (H&E) staining (left) and immunohistochemical anti-MAC-2 staining (right; brown color) in BAT from PBS and DT mice. Scale bar 100 μm. Quantification of MAC-2 positive area (panel below MAC-2 staining) as a percentage of total area.</p
    corecore