8 research outputs found

    Valsalva maneuver unveils central baroreflex dysfunction with altered blood pressure control in persons with a history of mild traumatic brain injury

    Get PDF
    Background Patients with a history of mild TBI (post-mTBI-patients) have an unexplained increase in long-term mortality which might be related to central autonomic dysregulation (CAD). We investigated whether standardized baroreflex-loading, induced by a Valsalva maneuver (VM), unveils CAD in otherwise healthy post-mTBI-patients. Methods In 29 healthy persons (31.3 ± 12.2 years; 9 women) and 25 post-mTBI-patients (35.0 ± 13.2 years, 7 women, 4–98 months post-injury), we monitored respiration (RESP), RR-intervals (RRI) and systolic blood pressure (BP) at rest and during three VMs. At rest, we calculated parameters of total autonomic modulation [RRI-coefficient-of-variation (CV), RRI-standard-deviation (RRI-SD), RRI-total-powers], of sympathetic [RRI-low-frequency-powers (LF), BP-LF-powers] and parasympathetic modulation [square-root-of-mean-squared-differences-of-successive-RRIs (RMSSD), RRI-high-frequency-powers (HF)], the index of sympatho-vagal balance (RRI LF/HF-ratios), and baroreflex sensitivity (BRS). We calculated Valsalva-ratios (VR) and times from lowest to highest RRIs after strain (VR-time) as indices of parasympathetic activation, intervals from highest systolic BP-values after strain-release to the time when systolic BP had fallen by 90 % of the differences between peak-phase-IV-BP and baseline-BP (90 %-BP-normalization-times), and velocities of BP-normalization (90 %-BP-normalization-velocities) as indices of sympathetic withdrawal. We compared patient- and control-parameters before and during VM (Mann-Whitney-U-tests or t-tests; significance: P < 0.05). Results At rest, RRI-CVs, RRI-SDs, RRI-total-powers, RRI-LF-powers, BP-LF-powers, RRI-RMSSDs, RRI-HF-powers, and BRS were lower in patients than controls. During VMs, 90 %-BP-normalization-times were longer, and 90 %-BP-normalization-velocities were lower in patients than controls (P < 0.05). Conclusions Reduced autonomic modulation at rest and delayed BP-decrease after VM-induced baroreflex-loading indicate subtle CAD with altered baroreflex adjustment to challenge. More severe autonomic challenge might trigger more prominent cardiovascular dysregulation and thus contribute to increased mortality risk in post-mTBI-patients

    Fingolimod initiation in multiple sclerosis patients is associated with potential beneficial cardiovascular autonomic effects

    No full text
    Background: Fingolimod slows heart rate (HR) due to vagomimetic effects and might cause additional cardiovascular autonomic changes. While the time course of HR changes is well described, the extent and course of cardiovascular autonomic changes upon fingolimod initiation has not yet been evaluated. This study, therefore, intended to assess cardiovascular autonomic changes during the first 6 h after fingolimod initiation. Methods: In 21 patients with relapsing-remitting multiple sclerosis (RRMS), we recorded respiration (RESP), electrocardiographic RR interval (RRI), systolic and diastolic blood pressure (BPsys, BPdia) at rest, before and 0.5, 1, 2, 3, 4, 5, and 6 h after fingolimod initiation. We calculated parameters of total autonomic modulation [RRI standard deviation (RRI-SD), RRI coefficient of variation (RRI-CV), RRI-total powers], mainly sympathetic cardiac modulation [RRI low frequency (LF) powers], sympathetic BP modulation (BPsys-LF powers), parasympathetic modulation [square root of the mean squared difference of successive RRIs (RMSSD), RRI high frequency (HF) powers], sympatho-vagal cardiac balance (RRI-LF/HF ratios), and baroreflex sensitivity (BRS). We compared parameters between the eight measurements [analysis of variance (ANOVA) or Friedman test with post-hoc analysis; significance: p < 0.05]. Results: After fingolimod initiation, RESP, BPsys, and BPsys-LF powers remained unchanged while RRIs, RRI-CV, RRI-SD, RRI-total powers, RRI-LF powers, RMSSD, RRI-HF powers, and BRS increased after 1 h and rose to peak values occurring after 5, 1, 2, 2, 1, 4, 4, and 4 h, respectively. After 3 h, BPdia had decreased significantly and was lowest after 5 h. RRI-LF/HF ratios decreased to a nadir after 4 h. Conclusions: The increases in parasympathetic and overall cardiac autonomic modulation and in BRS seen with fingolimod initiation are theoretically beneficial for the MS patient’s cardiovascular system. However, long-term studies must show whether these effects persist or are attenuated (e.g. due to S1P1 receptor down-regulation upon continued fingolimod therapy)

    Instrumented Balance Error Scoring System in Children and Adolescents—A Cross Sectional Study

    No full text
    Background: The Balance Error Scoring System (BESS) is a commonly used method for clinically evaluating balance after traumatic brain injury. The utilization of force plates, characterized by their cost-effectiveness and portability, facilitates the integration of instrumentation into the BESS protocol. Despite the enhanced precision associated with instrumented measures, there remains a need to determine the clinical significance and feasibility of such measures within pediatric cohorts. Objective: To report a comprehensive set of posturographic measures obtained during instrumented BESS and to examine the concurrent validity, reliability, and feasibility of instrumented BESS in the pediatric point of care setting. Methods: Thirty-seven participants (18 female; aged 13.32 ± 3.31 years) performed BESS while standing on a force plate to simultaneously compute stabilometric measures (instrumented BESS). Ellipse area (EA), path length (PL), and sway velocity (VM) were obtained for each of the six BESS positions and compared with the respective BESS scores. Additionally, the effects of sex and age were explored. A second BESS repetition was performed to evaluate the test–retest reliability. Feedback questionnaires were handed out after testing to evaluate the feasibility of the proposed protocol. Results: The BESS total score was 20.81 ± 6.28. While there was no statistically significant age or sex dependency in the BESS results, instrumented posturography demonstrated an age dependency in EA, VM, and PL. The one-leg stance on a soft surface resulted in the highest BESS score (8.38 ± 1.76), EA (218.78 cm2 ± 168.65), PL (4386.91 mm ± 1859.00), and VM (21.93 mm/s ± 9.29). The Spearman’s coefficient displayed moderate to high correlations between the EA (rs = 0.429–0.770, p = 0.001–0.009), PL (rs = 0.451–0.809, p = 0.001–0.006), and VM (rs = 0.451–0.809, p = 0.001–0.006) when compared with the BESS scores for all testing positions, except for the one-leg stance on a soft surface. The BESS total score significantly correlated during the first and second repetition (rs = 0.734, p ≤ 0.001), as did errors during the different testing positions (rs = 0.489–0.799, p ≤ 0.001–0.002), except during the two-legged stance on a soft surface. VM and PL correlated significantly in all testing positions (rs = 0.465–0.675, p ≤ 0.001–0.004; (rs = 0.465–0.675, p ≤ 0.001–0.004), as did EA for all positions except for the two-legged stance on a soft surface (rs = 0.392–0.581, p ≤ 0.001–0.016). A total of 92% of participants stated that the instructions for the testing procedure were very well-explained, while 78% of participants enjoyed the balance testing, and 61% of participants could not decide whether the testing was easy or hard to perform. Conclusions: Instrumented posturography may complement clinical assessment in investigating postural control in children and adolescents. While the BESS score only allows for the consideration of a total score approximating postural control, instrumented posturography offers several parameters representing the responsiveness and magnitude of body sway as well as a more differentiated analysis of movement trajectory. Concise instrumented posturography protocols should be developed to augment neuropediatric assessments in cases where a deficiency in postural control is suspected, potentially stemming from disruptions in the processing of visual, proprioceptive, and/or vestibular information
    corecore