3 research outputs found

    Drugs that Kill Cancer Stem-like Cells

    Get PDF
    The hallmarks of cancer include processes like self-sufficiency for growth signals, insensitivity to growth-inhibitory (anti-growth) signals, evasion of programmed cell death (apoptosis), unlimited replicative potential, sustained angiogenesis, and tissue invasion and metastasis (Hanahan & Weinberg, 2000). Recent research dictates that these definitions, while valid, ought to be enriched. That is, we should also consider tumours as a heterogeneous ‘collection of cancer cells’ with a hierarchy. This ‘hierarchical hypothesis’ tells us that tumours contain a minute (sometimes very small) sub-set of cells with distinct properties from the bulk of the tumour mass (D’Amour & Gage, 2002; Visvader & Lindeman, 2008; Visvader, 2009). These cells feature certain characteristics inherent to stem cells, including the capacity of self-renewal, asymmetric division and differentiation. They have also a very high propensity to form tumours. Therefore these cells are referred to as cancer stem cells (CSC) or cancer stem-like cells or, better, tumour-initiating cells (TICs). The terminology, while not too important, may be misleading though, since the term ‘cancer stem cells’ implies that we are dealing with true stem cells, which is not possible to reconcile with at this stage, perhaps even more so, since the origin of CSCs is not exactly known.Griffith Health, School of Medical ScienceFull Tex

    Mitochondrially targeted vitamin E succinate efficiently kills breast tumour-initiating cells in a complex II-dependent manner

    Get PDF
    Background: Accumulating evidence suggests that breast cancer involves tumour-initiating cells (TICs), which play a role in initiation, metastasis, therapeutic resistance and relapse of the disease. Emerging drugs that target TICs are becoming a focus of contemporary research. Mitocans, a group of compounds that induce apoptosis of cancer cells by destabilising their mitochondria, are showing their potential in killing TICs. In this project, we investigated mitochondrially targeted vitamin E succinate (MitoVES), a recently developed mitocan, for its in vitro and in vivo efficacy against TICs.Methods: The mammosphere model of breast TICs was established by culturing murine NeuTL and human MCF7 cells as spheres. This model was verified by stem cell marker expression, tumour initiation capacity and chemotherapeutic resistance. Cell susceptibility to MitoVES was assessed and the cell death pathway investigated. In vivo efficacy was studied by grafting NeuTL TICs to form syngeneic tumours.Results: Mammospheres derived from NeuTL and MCF7 breast cancer cells were enriched in the level of stemness, and the sphere cells featured altered mitochondrial function. Sphere cultures were resistant to several established anti-cancer agents while they were susceptible to MitoVES. Killing of mammospheres was suppressed when the mitochondrial complex II, the molecular target of MitoVES, was knocked down. Importantly, MitoVES inhibited progression of syngeneic HER2(high) tumours derived from breast TICs by inducing apoptosis in tumour cells.Conclusions: These results demonstrate that using mammospheres, a plausible model for studying TICs, drugs that target mitochondria efficiently kill breast tumour-initiating cells
    corecore