4 research outputs found

    PARP1-Driven Apoptosis in Chronic Lymphocytic Leukemia

    No full text
    Chronic lymphocytic leukemia (CLL) is considered a malignancy resulting from defects in apoptosis. For this reason, targeting apoptotic pathways in CLL may be valuable for its management. Poly [ADP-ribose] polymerase 1 (PARP1) is the main member of a family of nuclear enzymes that act as DNA damage sensors. Through binding on DNA damaged structures, PARP1 recruits repair enzymes and serves as a survival factor, but if the damage is severe enough, its action may lead the cell to apoptosis through caspase activation, or necrosis. We measured the PARP1 mRNA and protein pretreatment levels in 26 patients with CLL and the corresponding posttreatment levels in 15 patients after 3 cycles of immunochemotherapy, as well as in 15 healthy blood donors. No difference was found between the pre- and posttreatment levels of PARP1, but we found a statistically significant relative increase of the 89 kDa fragment of PARP1 that is cleaved by caspases in the posttreatment samples, indicating PARP1-related apoptosis in CLL patients after treatment. Our findings constitute an important step in the field, especially in the era of PARP1 inhibitors, and may serve as a base for future clinical trials with these agents in CLL

    Induction of innate immune responses by KPC-producing Klebsiella pneumoniae of the pandemic sequence type 258-clade I.

    No full text
    Klebsiella pneumoniae -carbapenemase-producing K. pneumoniae (KPC) sequence-type 258 (ST258) has emerged as an important human pathogen throughout the world. Although lacking known virulence factors, it is associated with significant morbidity and high mortality rates. The pathogenicity of KPC K. pneumoniae ST258 strains has not been fully elucidated yet. We sought to investigate the interactions of the KPC K. pneumoniae ST258-clade I with different components of innate immunity. Human serum was used to evaluate the serum bactericidal activity and the J774A.1 murine (BALB/c mice) macrophage cell-line was used to examine phagocytosis, mRNA expression and production of the pro-inflammatory cytokines IL-1β, TNF-α and IL-6. L-78, a KPC-producing K. pneumoniae ST258-clade I strain was used as representative of the strains circulating in Greek hospitals. K. pneumoniae ATCC 43816, a virulent K2 strain, was used for comparison. Strain L-78 was susceptible to human serum and rapidly phagocytosed by J774A.1 cells, in contrast to the virulent K2 strain, which was serum-resistant and slowly phagocytosed. Stimulation of the J774A.1 cells with the L-78 strain induced production of IL-1β at concentration levels significantly higher compared to K2, whereas production of TNF-α and IL-6 levels were comparable by the two strains. L-78 was able to induce IL-1β mRNA and NLRP3 mRNA expression. Our findings indicate that K. pneumoniae ST258-clade I is serum sensitive, rapidly phagocytosed and is capable of eliciting adequate innate immune response in terms of production of pro-inflammatory cytokines
    corecore