68 research outputs found

    Non-linear observability of activated sludge process models

    Get PDF
    The main contribution of this paper is to present a non-linear observability analysis method of Activated Sludge Models (ASM), which are used in many control applications. The objective is to reduce the unobservable ASM1 model to an observable one that can be used to implement advanced estimation algorithms. Local observability is achieved under certain operating conditions but failed at some points in the whole domain of definition. Furthermore, piece-wise observability rank test is also performed with three measurements and compared with non-linear observability. Simulation results are presented to demonstrate the proposed method. Copyright © 2005 IFA

    Networked PID control design : a pseudo-probabilistic robust approach

    Get PDF
    Networked Control Systems (NCS) are feedback/feed-forward control systems where control components (sensors, actuators and controllers) are distributed across a common communication network. In NCS, there exist network-induced random delays in each channel. This paper proposes a method to compensate the effects of these delays for the design and tuning of PID controllers. The control design is formulated as a constrained optimization problem and the controller stability and robustness criteria are incorporated as design constraints. The design is based on a polytopic description of the system using a Poisson pdf distribution of the delay. Simulation results are presented to demonstrate the performance of the proposed method

    Stability analysis tool for tuning unconstrained decentralized model predicitive controllers

    Get PDF
    Some processes are naturally suitable to be controlled in a decentralized framework: centralized control solutions are often infeasible in dealing with large scale plants and they are technologically prohibitive when the processes are too fast for the available computational resources. In these cases, the resulting control problem is usually split in many smaller subproblems and the global requirements are guaranteed by means of a proper coordination. The unconstrained decentralized case is here considered and a coordination strategy is proposed for improving the global control performances. This paper present a tool for setting up and tuning a nominally stable decentralized Model Predictive Controller. Numerical examples are proposed for testing and validating the developed technique

    On an application of extended kalman filtering to activated sludge processes: a benchmark study

    Get PDF
    The growing demand for performance improvements of urban wastewater system operation coupled with the lack of instrumentation in most wastewater treatment plants motivates the need for non-linear observers to be used as virtual sensors for estimation and control of effluent quality. This paper is focused on the development of a general procedure for on-line monitoring of activated sludge processes, using an extended Kalman filter (EKF) approach. The Activated Sludge Model no.1 (ASM1) is selected to describe the biological processes in the reactor. On-line measurements are corrupted by additive white noise and unknown inputs are modelled using fast Fourier transform (FFT) and spectrum analyses. The given procedure aims at reducing the original ASM1 model to an observable and identifiable model, which can be used for joint non-linear state and parameter estimations. Simulation results are presented to demonstrate the effectiveness of the proposed methods and show that on-line monitoring of SND and XND concentrations is achieved when dynamic input data are used tocharacterize the influent wastewater for the model

    Comparative Study of Parametric and Non-parametric Approaches in Fault Detection and Isolation

    Get PDF

    Data-driven adaptive model-based predictive control with application in wastewater systems

    Get PDF
    This study is concerned with the development of a new data-driven adaptive model-based predictive controller (MBPC) with input constraints. The proposed methods employ subspace identification technique and a singular value decomposition (SVD)-based optimisation strategy to formulate the control algorithm and incorporate the input constraints. Both direct adaptive model-based predictive controller (DAMBPC) and indirect adaptive model-based predictive controller (IAMBPC) are considered. In DAMBPC, the direct identification of controller parameters is desired to reduce the design effort and computational load while the IAMBPC involves a two-stage process of model identification and controller design. The former method only requires a single QR decomposition for obtaining the controller parameters and uses a receding horizon approach to process input/output data for the identification. A suboptimal SVD-based optimisation technique is proposed to incorporate the input constraints. The proposed techniques are implemented and tested on a fourth order non-linear model of a wastewater system. Simulation results are presented to compare the direct and indirect adaptive methods and to demonstrate the performance of the proposed algorithms

    Wiener modelling and model predictive control for wastewater applications

    Get PDF
    The research presented in this paper aims to demonstrate the application of predictive control to an integrated wastewater system with the use of the wiener modeling approach. This allows the controlled process, dissolved oxygen, to be considered to be composed of two parts: the linear dynamics, and a static nonlinearity, thus allowing control other than common approaches such as gain-scheduling, or switching, for series of linear controllers. The paper discusses various approaches to the modelling required for control purposes, and the use of wiener modelling for the specific application of integrated waste water control. This paper demonstrates this application and compares with that of another nonlinear approach, fuzzy gain-scheduled control

    Brain derived neurotrophic factor modification of epileptiform burst discharges in a temporal lobe epilepsy model

    Get PDF
    Introduction: Transforming Growth Factor-Beta 1 (TGF-ÎÂČ1) is a pleiotropic cytokine with potent anti-inflammatory property, which has been considered as an essential risk factor in the inflammatory process of Ischemic Stroke (IS), by involving in the pathophysiological progression of hypertension, atherosclerosis, and lipid metabolisms. -509C/T TGF-ÎÂČ1 gene polymorphism has been found to be associated with the risk of IS. The aim of this meta-analysis was to provide a relatively comprehensive account of the relation between -509C/T gene polymorphisms of TGF-ÎÂČ1 and susceptibility to IS. Methods: Male Wistar rats were divided into sham (receiving phosphate buffered saline within dorsal hippocampus), pilocarpine (epileptic model of TLE), single injection BDNF (epileptic rats which received single high dose of BDBF within dorsal hippocampus), and multiple injections BDNF (epileptic rats which received BDNF in days 10, 11, 12, and 13 after induction of TLE) groups. Their electrocorticogram was recorded and amplitude, frequency, and duration of spikes were evaluated. Results: Amplitude and frequency of epileptiform burst discharges were significantly decreased in animals treated with BDNF compared to pilocarpine group. Conclusion: Our findings suggested that BDNF may modulate the epileptic activity in the animal model of TLE. In addition, it may have therapeutic effect for epilepsy. More studies are necessary to clarify the exact mechanisms of BDNF effects

    A SAT Approach to Clique-Width

    Full text link
    Clique-width is a graph invariant that has been widely studied in combinatorics and computer science. However, computing the clique-width of a graph is an intricate problem, the exact clique-width is not known even for very small graphs. We present a new method for computing the clique-width of graphs based on an encoding to propositional satisfiability (SAT) which is then evaluated by a SAT solver. Our encoding is based on a reformulation of clique-width in terms of partitions that utilizes an efficient encoding of cardinality constraints. Our SAT-based method is the first to discover the exact clique-width of various small graphs, including famous graphs from the literature as well as random graphs of various density. With our method we determined the smallest graphs that require a small pre-described clique-width.Comment: proofs in section 3 updated, results remain unchange

    A two layer controller for integrated fin and rudder roll stabilisation

    No full text
    This paper looks at a two layer controller for integrated fin and rudder roll stabilisatio
    • 

    corecore