45 research outputs found

    Cannabinoids Enhance Subsecond Dopamine Release in the Nucleus Accumbens of Awake Rats

    Get PDF
    Dopaminergic neurotransmission has been highly implicated in the reinforcing properties of many substances of abuse, including marijuana. Cannabinoids activate ventral tegmental area dopaminergic neurons, the main ascending projections of the mesocorticolimbic dopamine system, and change their spiking pattern by increasing the number of impulses in a burst and elevating the frequency of bursts. Although they also increase time-averaged striatal dopamine levels for extended periods of time, little is known about the temporal structure of this change. To elucidate this, fast-scan cyclic voltammetry was used to monitor extracellular dopamine in the nucleus accumbens of freely moving rats with subsecond timescale resolution. Intravenous administration of the central cannabinoid (C

    Phasic Dopamine Release Evoked by Abused Substances Requires Cannabinoid Receptor Activation

    Get PDF
    Transient surges of dopamine in the nucleus accumbens are associated with drug seeking. Using a voltammetric sensor with high temporal and spatial resolution, we demonstrate differences in the temporal profile of dopamine concentration transients caused by acute doses of nicotine, ethanol, and cocaine in the nucleus accumbens shell of freely moving rats. Despite differential release dynamics, all drug effects are uniformly inhibited by administration of rimonabant, a cannabinoid receptor (C

    The basolateral amygdala in reward learning and addiction.

    No full text

    Amygdala-cortical collaboration in reward learning and decision making.

    No full text
    Adaptive reward-related decision making requires accurate prospective consideration of the specific outcome of each option and its current desirability. These mental simulations are informed by stored memories of the associative relationships that exist within an environment. In this review, I discuss recent investigations of the function of circuitry between the basolateral amygdala (BLA) and lateral (lOFC) and medial (mOFC) orbitofrontal cortex in the learning and use of associative reward memories. I draw conclusions from data collected using sophisticated behavioral approaches to diagnose the content of appetitive memory in combination with modern circuit dissection tools. I propose that, via their direct bidirectional connections, the BLA and OFC collaborate to help us encode detailed, outcome-specific, state-dependent reward memories and to use those memories to enable the predictions and inferences that support adaptive decision making. Whereas lOFC→BLA projections mediate the encoding of outcome-specific reward memories, mOFC→BLA projections regulate the ability to use these memories to inform reward pursuit decisions. BLA projections to lOFC and mOFC both contribute to using reward memories to guide decision making. The BLA→lOFC pathway mediates the ability to represent the identity of a specific predicted reward and the BLA→mOFC pathway facilitates understanding of the value of predicted events. Thus, I outline a neuronal circuit architecture for reward learning and decision making and provide new testable hypotheses as well as implications for both adaptive and maladaptive decision making

    Regulation of habit formation in the dorsal striatum.

    No full text
    Habits are an essential and pervasive component of our daily lives that allow us to efficiently perform routine tasks. But their disruption contributes to the symptoms that underlie many psychiatric diseases. Emerging data are revealing the cellular and molecular mechanisms of habit formation in the dorsal striatum. New data suggest that in both the dorsolateral and dorsomedial striatum histone deacetylase (HDAC) activity acts as a critical negative regulator of the transcriptional processes underlying habit formation. In this review, we discuss this recent work and draw conclusions relevant to the treatment of diseases marked by maladaptive habits

    Probing the neurochemical correlates of motivation and decision making.

    Get PDF
    Online electrochemical detection techniques are the state-of-the-art for evaluating chemical communication in the brain underlying motivated behavior and decision making. In this Viewpoint, we discuss avenues for future technological development, as well as the requirement for increasingly sophisticated and interdisciplinary behavioral analysis
    corecore