189 research outputs found

    Identification and characterisation of novel genes involved in skeletal muscle hypertrophy

    Full text link
    There is mounting evidence in support of the view that skeletal muscle hypertrophy results from the complex and coordinated interaction of numerous signalling pathways. Well characterised components integral to skeletal muscle adaptation include the transcriptional activity of the members of the myogenic regulatory factors, numerous secreted peptide growth factors, and the regenerative potential of satellite cells. Whilst studies investigating isolated components or pathways have enhanced our current understanding of skeletal muscle hypertrophy, our knowledge of how all of these components react in concert to a common stimulus remains limited. The broad aim of this thesis was to identify and characterise novel genes involved in skeletal muscle hypertrophy. We have created a customised human skeletal muscle specific microarray which contains ∼11,000 cDNA clones derived from a normalised human skeletal muscle cDNA library as well as 270 genes with known functional roles in human skeletal muscle. The first aspect of this thesis describes the production of the microarray and evaluates the robustness and reproducibility of this analytical technique. Study one aimed to use this microarray in the identification of genes that are differentially expressed during the forced differentiation of human rhabdomyosarcoma cells, an in vitro model of skeletal muscle development. Firstly using this unique model of aberrant myogenic differentiation we aimed to identify genes with previously unidentified roles in myogenesis. Secondly, the data from this study permitted the examination of the performance of the microarray in detecting differential gene expression in a biological system. We identified several new genes with potential roles in the myogenic arrest of rhabdomyosarcoma and further characterised the expression of muscle specific genes in rhabdomyosarcoma differentiation. In study two, the molecular responses of cell cycle regulators, muscle regulatory factors, and atrophy related genes were mapped in response to a single bout of resistance exercise in human skeletal muscle. We demonstrated an increased expression of MyoD, myogenin and p21, whilst the expression of myostatin was decreased. The results of this study contribute to the existing body of knowledge on the molecular regulation skeletal muscle to a hypertrophic stimulus. In study three, the muscle samples collected in study two were analysed using the human skeletal muscle specific microarray for the identification of novel genes with potential roles in the hypertrophic process. The analysis uncovered four interesting genes (TXNIP, MLP, ASB5, FLJ 38973) that have not previously been examined in human skeletal muscle in response to resistance exercise. The functions of these genes and their potential roles in skeletal muscle are discussed. In study four, the four genes identified in study three were examined in human primary skeletal muscle cell cultures during myogenic differentiation. Human primary skeletal muscle cells were derived from the vastus lateralis muscle of 8 healthy volunteers (6 males and 2 females). Cell cultures were differentiated using serum withdrawal and serum withdrawal combined with IGF-1 supplementation. Markers of the cell proliferation, cell cycle arrest and myogenic differentiation were examined to assess the effectiveness of the differentiation stimulus. Additionally, the expressions of TXNIP, MLP, ASB5 and FLJ 38973 measured in an attempt to characterise further their roles in skeletal muscle. The expression of TXNIP changed markedly in response to both differentiation stimuli, whilst the expression of the remaining genes were not altered. Therefore it was suggested that expression of these genes might be responsive to the mechanical strain or contraction induced by the resistance exercise. In order to examine whether these novel genes responded specifically to resistance type exercise, their expression was examined following a single bout of endurance exercise. The expression of TXNIP, MLP, and FLJ 38973 remained unchanged whilst ASB5 increased 30 min following the cessation of the exercise

    Phenotypic and genotypic characterization of linezolid-resistant Enterococcus faecium from the USA and Pakistan

    Get PDF
    OBJECTIVES: Linezolid is an important therapeutic option for the treatment of infections caused by VRE. Linezolid is a synthetic antimicrobial and resistance to this antimicrobial agent remains relatively rare. As a result, data on the comparative genomics of linezolid resistance determinants in Enterococcus faecium are relatively sparse. METHODS: To address this knowledge gap in E. faecium, we deployed phenotypic antibiotic susceptibility testing and Illumina WGS on hospital surface (environmental) and clinical isolates from the USA and Pakistan. RESULTS: We found complete concordance between isolate source country and mechanism of linezolid resistance, with all the US isolates possessing a 23S rRNA gene mutation and the Pakistan isolates harbouring two to three acquired antibiotic resistance genes. These resistance genes include the recently elucidated efflux-pump genes optrA and poxtA and a novel cfr-like variant. Although there was no difference in the linezolid MIC between the US and Pakistan isolates, there was a significant difference in the geometric mean of the MIC between the Pakistan isolates that had two versus three of the acquired antibiotic resistance genes. In five of the Pakistan E. faecium that possessed all three of the resistance genes, we found no difference in the local genetic context of poxtA and the cfr-like gene, but we identified different genetic contexts surrounding optrA. CONCLUSIONS: These results demonstrate that E. faecium from different geographical regions employ alternative strategies to counter selective pressure of increasing clinical linezolid use

    Large Impacts around a Solar Analog Star in the Era of Terrestrial Planet Formation

    Get PDF
    The final assembly of terrestrial planets occurs via massive collisions, which can launch copious clouds of dust that are warmed by the star and glow in the infrared. We report the real-time detection of a debris-producing impact in the terrestrial planet zone around a 35-million year-old solar analog star. We observed a substantial brightening of the debris disk at 3-5 {\mu}m, followed by a decay over a year, with quasi-periodic modulations of the disk flux. The behavior is consistent with the occurrence of a violent impact that produced vapor out of which a thick cloud of silicate spherules condensed that were ground into dust by collisions. These results demonstrate how the time domain can become a new dimension for the study of terrestrial planet formation.Comment: 25 pages, 7 figures (fixed a typo in name

    Opportunities and Challenges to Emergency Department-Based HIV Testing Services and Self-Testing Programs: A Qualitative Study of Healthcare Providers and Patients in Kenya

    Get PDF
    BACKGROUND: Young people in Sub-Saharan Africa, especially males, have been insufficiently engaged through HIV Testing Services (HTS). In Kenya, younger persons are often treated in emergency departments (EDs) for injuries, an interaction where HTS and HIV self-testing (HIVST) can be leveraged. Data from stakeholders on ED-HTS and HIVST is lacking and needed to understand opportunities and barriers for HIV testing and care, and inform program implementation. METHODS: Between December 2021 and March 2022, 32 in-depth interviews (IDIs) were conducted with 16 male and 16 female patients who had been treated in the Kenyatta National Hospital (KNH) ED, half of whom had been HIV-tested. Six focus-group discussions (FGDs) were also conducted with 50 nurses, doctors, HIV testing counselors, and administrators working in the ED. All transcripts were double-coded and thematically analyzed using Dedoose software and a parallel inductive and deductive coding approach which allowed for capture of both a priori and emergent themes. RESULTS: Patients and providers agreed that ED-HTS are facilitated by friendly staff, patient education, high perceived HIV risk, and confidentiality. However, ED-HTS is limited by burdens on staff, resources, time, and space, as well as severity of patient injuries limiting ability to consent to or prioritize HIV testing. These limitations provide opportunities for ED-HIVST: particularly the ability to test at a comfortable time and place, especially when provided alongside sufficient HIV and testing education, contact with healthcare providers, and psychosocial support. Barriers for ED-HIVST where identified and as patients’ concerns about HIVST accuracy and mental health impacts of a positive test, as well providers’ identified barriers on their concerns for loss to follow up and inability to complete confirmatory testing. COM-B Model [Figure: see text] Application of the COM-B Model of Behavior Change to ED-HIVST Acceptability in Kenya CONCLUSION: ED stakeholders are receptive to HTS and HIVST, and patients desire the opportunity to use HIVST. Potential challenges—such as psychological effects of testing positive, worries about access to follow-up care, and confusion about how to self-administer testing, may be addressed through programming designed to promote education, access and ensure follow-up mechanisms. DISCLOSURES: All Authors: No reported disclosures

    Isolation of SARS-CoV-2 in viral cell culture in immunocompromised patients with persistently positive RT-PCR results

    Get PDF
    Immunocompromised adults can have prolonged acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive RT-PCR results, long after the initial diagnosis of coronavirus disease 2019 (COVID-19). This study aimed to determine if SARS-CoV-2 virus can be recovered in viral cell culture from immunocompromised adults with persistently positive SARS-CoV-2 RT-PCR tests. We obtained 20 remnant SARS-CoV-2 PCR positive nasopharyngeal swabs from 20 immunocompromised adults with a positive RT-PCR test ≥14 days after the initial positive test. The patients\u27

    Multicenter evaluation of the Xpert Norovirus assay for detection of norovirus genogroups I and II in fecal specimens

    Get PDF
    Norovirus is the most common cause of sporadic gastroenteritis and outbreaks worldwide. The rapid identification of norovirus has important implications for infection prevention measures and may reduce the need for additional diagnostic testing. The Xpert Norovirus assay recently received FDA clearance for the detection and differentiation of norovirus genogroups I and II (GI and GII), which account for the vast majority of infections. In this study, we evaluated the performance of the Xpert Norovirus assay with both fresh, prospectively collected ( n = 914) and frozen, archived ( n = 489) fecal specimens. A Centers for Disease Control and Prevention (CDC) composite reference method was used as the gold standard for comparison. For both prospective and frozen specimens, the Xpert Norovirus assay showed positive percent agreement (PPA) and negative percent agreement (NPA) values of 98.3% and 98.1% for GI and of 99.4% and 98.2% for GII, respectively. Norovirus prevalence in the prospective specimens (collected from March to May of 2014) was 9.9% ( n = 90), with the majority of positives caused by genogroup II (82%, n = 74). The positive predictive value (PPV) of the Xpert Norovirus assay was 75% for GI-positive specimens, whereas it was 86.5% for GII-positive specimens. The negative predictive values (NPV) for GI and GII were 100% and 99.9%, respectively

    Antibodies in healthcare personnel following severe acute respiratory syndrome coronavirus virus 2 (SARS-CoV-2) infection

    Get PDF
    In a prospective cohort of healthcare personnel (HCP), we measured severe acute respiratory syndrome coronavirus virus 2 (SARS-CoV-2) nucleocapsid IgG antibodies after SARS-CoV-2 infection. Among 79 HCP, 68 (86%) were seropositive 14-28 days after their positive PCR test, and 54 (77%) of 70 were seropositive at the 70-180-day follow-up. Many seropositive HCP (95%) experienced an antibody decline by the second visit

    Chronic testicular Chlamydia muridarum infection impairs mouse fertility and offspring development

    Get PDF
    With approximately 131 million new genital tract infections occurring each year, Chlamydia is the most common sexually transmitted bacterial pathogen worldwide. Male and female infections occur at similar rates and both cause serious pathological sequelae. Despite this, the impact of chlamydial infection on male fertility has long been debated, and the effects of paternal chlamydial infection on offspring development are unknown. Using a male mouse chronic infection model, we show that chlamydial infection persists in the testes, adversely affecting the testicular environment. Infection increased leukocyte infiltration, disrupted the blood:testis barrier and reduced spermiogenic cell numbers and seminiferous tubule volume. Sperm from infected mice had decreased motility, increased abnormal morphology, decreased zona-binding capacity, and increased DNA damage. Serum anti-sperm antibodies were also increased. When both acutely and chronically infected male mice were bred with healthy female mice, 16.7% of pups displayed developmental abnormalities. Female offspring of chronically infected sires had smaller reproductive tracts than offspring of noninfected sires. The male pups of infected sires displayed delayed testicular development, with abnormalities in sperm vitality, motility, and sperm-oocyte binding evident at sexual maturity. These data suggest that chronic testicular Chlamydia infection can contribute to male infertility, which may have an intergenerational impact on sperm quality
    • …
    corecore