7 research outputs found

    脂質摂取の多い食習慣とたんぱく質及び甘い食べ物に対する欲求との関連

    Get PDF
    Reducing dietary calorie density (CD) is useful in body weight management. This study investigates the association between dietary habits and preferences for different CDs. We conducted a randomized crossover study of 232 healthy subjects who consumed packed lunch boxes containing a control, high-meat and low-rice, low-vegetable, medium-fat and low-vegetable, high-fat, and high-fat and low-vegetable meals over six sessions. The subjective levels of sensory properties were assessed over time using a visual analog scale and the area under the curve. Subjects were assessed for dietary habits using a brief-type self-administered diet history questionnaire (BDHQ) and were divided into two groups based on a daily fat energy ratio≥25% (high fat [HF], n=116) and <25% (normal, n=116) that was matched for age, body mass index, and sex ratio. Our findings indicate that the desire for sweetness was higher in the HF group than in the normal group, regardless of the meals consumed. Particularly, among the 500-kcal low-CD meals, a high-protein meal provided greater fullness and satisfaction and lower prospective consumption in the HF group than in the normal group. Therefore, our study demonstrates that postprandial appetite sensation is associated with dietary habits of fat intake

    Isolation, Genomic Sequence and Physiological Characterization of Parageobacillus sp. G301, an Isolate Capable of Both Hydrogenogenic and Aerobic Carbon Monoxide Oxidation

    No full text
    Prokaryotes that can oxidize carbon monoxide (CO oxidizers) can use this gas as a source of carbon or energy. They oxidize carbon monoxide with carbon monoxide dehydrogenases (CODHs): these are divided into nickel-containing CODH (Ni-CODH), which are sensitive to O₂, and molybdenum-containing CODH (Mo-CODH), which can function aerobically. The oxygen conditions required for CO oxidizers to oxidize CO may be limited, as those which have been isolated and characterized so far contain either Ni- or Mo-CODH. Here, we report a novel CO oxidizer, Parageobacillus sp. G301, which is capable of CO oxidation using both types of CODH based on genomic and physiological characterization. This thermophilic, facultatively anaerobic Bacillota bacterium was isolated from the sediments of a freshwater lake. Genomic analyses revealed that strain G301 possessed both Ni-CODH and Mo-CODH. Genome-based reconstruction of its respiratory machinery and physiological investigations indicated that CO oxidation by Ni-CODH was coupled with H₂ production (proton reduction), whereas CO oxidation by Mo-CODH was coupled with O₂ reduction under aerobic conditions and nitrate reduction under anaerobic conditions. G301 would thus be able to thrive via CO oxidation under a wide range of conditions, from aerobic environments to anaerobic environments, even with no terminal electron acceptors other than protons. Comparative genome analyses revealed no significant differences in genome structures and encoded cellular functions, except for CO oxidation between CO oxidizers and non-CO oxidizers in the genus Parageobacillus; CO oxidation genes are retained exclusively for CO metabolism and related respiration
    corecore