5 research outputs found

    Intensification of anaerobic digestion efficiency with use of mechanical excess sludge disintegration in the context of increased energy production in wastewater treatment plants

    No full text
    The main goal of the study was to evaluate the effects of mechanical sludge disintegration for enhancing full scale anaerobic digestion of municipal sludge. Batch disintegration tests and lab dewatering tests were also performed aiming at determining the release of organic compounds and assessing the impact of disintegration of excess sludge before the fermentation process of mixed sludge on the dewaterability of post-fermented sludge, respectively. In the study a disc disintegrator driven by a motor with a power of 30 kW, revolutions n = 2950 rpm has been used. It was shown that with increase of energy consumed in the disintegration, the increased amounts of organic compounds were released from the sludge. It was also documented that the introduction of the excess sludge disintegration prior to fermentation tank, resulted in a significant increase in biogas production (by an average of 33.9%) and in increase in volatile total solids reduction in the fermented sludge (by an average of 22.7%). Moreover, the obtained results indicate the possibility of obtaining a higher degree of sludge dewatering, which was subjected to anaerobic stabilization with using disintegrated excess sludge

    Innovative Hydrodynamic Disintegrator Adjusted to Agricultural Substrates Pre-treatment Aimed at Methane Production Intensification—CFD Modelling and Batch Tests

    No full text
    The study objective was to adjust the hydrodynamic disintegrator dedicated to sewage sludge pre-treatment (HDS) to work with agricultural substrate. This involved the development and implementation of a mathematical model of flow via the device’s domain. An innovative disintegrator (HAD—hydrodynamic disintegrator for agriculture) was designed, built, and tested based on the obtained results. The main improvements to the HDS include the implementation of shredding knives in order to overcome clogging by crushed substrate, and the application of ribs in the recirculation zone, contributing to the development of an additional structure damage zone. The challenge of this study was also to determine the operating parameters of the HDA that would provide for an increase in methane production with positive energy balance. The testing procedures, for which maize silage was selected, involved batch disintegration tests and biochemical methane potential tests. No clogging of rotor or spontaneous shutting off of the device, in other words, problems that had occurred in the HDS, were observed. The applied pre-treatment method permitted an increase in the methane potential of maize silage by 34.4%, 27.0%, and 21.6%, respectively for samples disintegrated at energy densities of 10 kJ/L, 20 kJ/L, and 35 kJ/L with net energy profit

    Operational characteristics of an innovative device dedicated for the hydrodynamic disintegration of sewage sludge

    No full text
    This paper presents the results of the first stage of the project, aimed at the assessment of the applicability of the new apparatus for disintegration of excess waste activated sludge. It was documented that the analysed device allows for disintegration of sewage sludge with an efficiency comparable to that obtained in other devices dedicated for mechanical disintegration of sewage sludge described in the literature. The disintegration process at energy density in a range of 35–210 kJ/l resulted in the release from activated sludge flocs of 219–515 mg SCOD/l for 35 kJ/l to 2138–4884 mg SCOD/l for 210 kJ/l
    corecore