10 research outputs found

    Possibilities of nanodiamonds application – biological and medical aspects

    No full text
    This topical review briefly discusses selected highlights of research on diamond nanoparticles obtained by different methods and their potential applications in biology and medicine. In recent years nanotechnology has aroused interest of large number of scientists who endeavor to obtain nanoparticles (which differ in size and structure of surface) using different methods, in order to determine their physical, chemical and biological properties that are in relation to the methods used in the process of their production. The knowledge developed in this way will be beneficial in an attempt to use nanoparticles more reasonably in various branches of science. The distinguishing features of carbon nanoparticles are their biocompatibility, photostability and easily chemically modified surface that result in high usefulness for intarcellular studies. What is more, low toxicity of nanoparticles with many cell lines is at the center of scientific interest. This, in turn, leads to a large number of biomedical applications. The property that nanodiamonds are able to penetrate into cells through endocytosis, allows to deliver the drug connected with nanoparticles into cancer cells. These features of nanoparticles have given many promising leads in nanooncology, in particular in drug delivery, diagnosis, imaging and therapy. This paper presents a summary of different classes of nanodiamond particles, the ways of their uptake into cells, an overview of the possible application of nanoparticles as nanocarriers and as a clinical theranostic platform, as well as advantages and disadvantages of using nanodiamonds in biomedicine

    The Impact of O-Glycosylation on Cyanidin Interaction with RBCs and HMEC-1 Cells—Structure–Activity Relationships

    No full text
    With the aim of contributing to the knowledge about their potential therapeutic activity, we determined the biological activities of cyanidin and its selected O-glycosides in relation to erythrocytes (RBCs) and human dermal vascular endothelial cells (HMEC-1). Furthermore, on the basis of changes in the physical/functional properties of the cells, the structure–activity relationships of the compounds were determined. Concerning erythrocytes, we analyzed the antioxidant activity of the compounds and their impact on the RBCs’ shape and transmembrane potential. The compounds’ cytotoxic activity, ability to modulate apoptosis, cell cycle, and intracellular ROS generation, as well as inhibitory activity against AAPH-inducted oxidative stress, were determined in relation to HMEC-1 cells. We demonstrated that biological activity of cyanidin and its O-glycosides strongly depends on the number and type of sugar substituents, and varies depending on the extracellular environment and type of cells. The compounds are practically non-cytotoxic, and do not induce apoptosis or disturb the progression of the cell cycle. Additionally, the compounds alter the shape of RBCs, but they do not affect their transmembrane potential. They effectively protect erythrocytes against free radicals and affect intracellular reactive oxygen spices (ROS) generation under physiological and AAPH-induced oxidative stress conditions. Our results suggest a potential beneficial effect of cyanidin on the cardiovascular system

    Protection of Erythrocytes and Microvascular Endothelial Cells against Oxidative Damage by <i>Fragaria vesca</i> L. and <i>Rubus idaeus</i> L. Leaves Extracts—The Mechanism of Action

    No full text
    The aim of this work is to determine the biological activity of ellagitannins rich extracts from leaves of raspberry (Rubus idaeus L.) and wild strawberry (Fragaria vesca L.) in relation to cells and cell membranes. Detailed qualitative and quantitative analysis of phenolic compounds of the extract was made using chromatographic methods. Cytotoxic and antioxidant activities of tested extracts in relation to erythrocytes and human vascular endothelial cells (HMEC-1) were determined by using fluorimetric and spectrophotometric methods. In order to establish the influence of the extracts on the physical properties of the membrane, such as osmotic resistance and erythrocytes shapes, mobility and/or hydration of polar heads and fluidity of hydrocarbon chains of membrane lipids, microscopic and spectroscopic methods were used. The results showed that the extracts are non-toxic for erythrocytes and HMEC-1 cells (up to concentration of 50 µg/mL), but they effectively protect cells and their membranes against oxidative damage. The increase in osmotic resistance of erythrocytes, formation of echinocytes and changes only in the polar part of the membrane caused by the extracts demonstrate their location mainly in the hydrophilic part of the membrane. The results indicate that tested extracts have high biological activities and may be potentially used in delaying the ageing process of organisms and prevention of many diseases, especially those associated with oxidative stress

    Identifying the Molecular Mechanisms and Types of Cell Death Induced by <i>bio</i>- and <i>pyr</i>-Silica Nanoparticles in Endothelial Cells

    No full text
    The term “nanosilica” refers to materials containing ultrafine particles. They have gained a rapid increase in popularity in a variety of applications and in numerous aspects of human life. Due to their unique physicochemical properties, SiO2 nanoparticles have attracted significant attention in the field of biomedicine. This study aimed to elucidate the mechanism underlying the cellular response to stress which is induced by the exposure of cells to both biogenic and pyrogenic silica nanoparticles and which may lead to their death. Both TEM and fluorescence microscopy investigations confirmed molecular changes in cells after treatment with silica nanoparticles. The cytotoxic activity of the compounds and intracellular RNS were determined in relation to HMEC-1 cells using the fluorimetric method. Apoptosis was quantified by microscopic assessment and by flow cytometry. Furthermore, the impact of nanosilica on cell migration and cell cycle arrest were determined. The obtained results compared the biological effects of mesoporous silica nanoparticles extracted from Urtica dioica L. and pyrogenic material and indicated that both types of NPs have an impact on RNS production causing apoptosis, necrosis, and autophagy. Although mesoporous silica nanoparticles did not cause cell cycle arrest, at the concentration of 50 μg/mL and higher they could disturb redox balance and stimulate cell migration

    Are Biogenic and Pyrogenic Mesoporous SiO<sub>2</sub> Nanoparticles Safe for Normal Cells?

    No full text
    Silicon dioxide, in the form of nanoparticles, possesses unique physicochemical properties (size, shape, and a large surface to volume ratio). Therefore, it is one of the most promising materials used in biomedicine. In this paper, we compare the biological effects of both mesoporous silica nanoparticles extracted from Urtica dioica L. and pyrogenic material. Both SEM and TEM investigations confirmed the size range of tested nanoparticles was between 6 and 20 nanometers and their amorphous structure. The cytotoxic activity of the compounds and intracellular ROS were determined in relation to cells HMEC-1 and erythrocytes. The cytotoxic effects of SiO2 NPs were determined after exposure to different concentrations and three periods of incubation. The same effects for endothelial cells were tested under the same range of concentrations but after 2 and 24 h of exposure to erythrocytes. The cell viability was measured using spectrophotometric and fluorimetric assays, and the impact of the nanoparticles on the level of intracellular ROS. The obtained results indicated that bioSiO2 NPs, present higher toxicity than pyrogenic NPs and have a higher influence on ROS production. Mesoporous silica nanoparticles show good hemocompatibility but after a 24 h incubation of erythrocytes with silica, the increase in hemolysis process, the decrease in osmotic resistance of red blood cells, and shape of erythrocytes changed were observed

    Are Biogenic and Pyrogenic Mesoporous SiO2 Nanoparticles Safe for Normal Cells?

    No full text
    Silicon dioxide, in the form of nanoparticles, possesses unique physicochemical properties (size, shape, and a large surface to volume ratio). Therefore, it is one of the most promising materials used in biomedicine. In this paper, we compare the biological effects of both mesoporous silica nanoparticles extracted from Urtica dioica L. and pyrogenic material. Both SEM and TEM investigations confirmed the size range of tested nanoparticles was between 6 and 20 nanometers and their amorphous structure. The cytotoxic activity of the compounds and intracellular ROS were determined in relation to cells HMEC-1 and erythrocytes. The cytotoxic effects of SiO2 NPs were determined after exposure to different concentrations and three periods of incubation. The same effects for endothelial cells were tested under the same range of concentrations but after 2 and 24 h of exposure to erythrocytes. The cell viability was measured using spectrophotometric and fluorimetric assays, and the impact of the nanoparticles on the level of intracellular ROS. The obtained results indicated that bioSiO2 NPs, present higher toxicity than pyrogenic NPs and have a higher influence on ROS production. Mesoporous silica nanoparticles show good hemocompatibility but after a 24 h incubation of erythrocytes with silica, the increase in hemolysis process, the decrease in osmotic resistance of red blood cells, and shape of erythrocytes changed were observed
    corecore