46 research outputs found

    Loop 1 modulates the fidelity of DNA polymerase λ

    Get PDF
    Differences in the substrate specificity of mammalian family X DNA polymerases are proposed to partly depend on a loop (loop 1) upstream of the polymerase active site. To examine if this is the case in DNA polymerase λ (pol λ), here we characterize a variant of the human polymerase in which nine residues of loop 1 are replaced with four residues from the equivalent position in pol β. Crystal structures of the mutant enzyme bound to gapped DNA with and without a correct dNTP reveal that the change in loop 1 does not affect the overall structure of the protein. Consistent with these structural data, the mutant enzyme has relatively normal catalytic efficiency for correct incorporation, and it efficiently participates in non-homologous end joining of double-strand DNA breaks. However, DNA junctions recovered from end-joining reactions are more diverse than normal, and the mutant enzyme is substantially less accurate than wild-type pol λ in three different biochemical assays. Comparisons of the binary and ternary complex crystal structures of mutant and wild-type pol λ suggest that loop 1 modulates pol λ’s fidelity by controlling dNTP-induced movements of the template strand and the primer-terminal 3′-OH as the enzyme transitions from an inactive to an active conformation

    Promiscuous mismatch extension by human DNA polymerase lambda

    Get PDF
    DNA polymerase lambda (Pol λ) is one of several DNA polymerases suggested to participate in base excision repair (BER), in repair of broken DNA ends and in translesion synthesis. It has been proposed that the nature of the DNA intermediates partly determines which polymerase is used for a particular repair reaction. To test this hypothesis, here we examine the ability of human Pol λ to extend mismatched primer-termini, either on ‘open’ template-primer substrates, or on its preferred substrate, a 1 nt gapped-DNA molecule having a 5′-phosphate. Interestingly, Pol λ extended mismatches with an average efficiency of ≈10−2 relative to matched base pairs. The match and mismatch extension catalytic efficiencies obtained on gapped molecules were ≈260-fold higher than on template-primer molecules. A crystal structure of Pol λ in complex with a single-nucleotide gap containing a dG·dGMP mismatch at the primer-terminus (2.40 Å) suggests that, at least for certain mispairs, Pol λ is unable to differentiate between matched and mismatched termini during the DNA binding step, thus accounting for the relatively high efficiency of mismatch extension. This property of Pol λ suggests a potential role as a ‘mismatch extender’ during non-homologous end joining (NHEJ), and possibly during translesion synthesis

    Structural accommodation of ribonucleotide incorporation by the DNA repair enzyme polymerase Mu

    Get PDF
    While most DNA polymerases discriminate against ribonucleotide triphosphate (rNTP) incorporation very effectively, the Family X member DNA polymerase μ (Pol μ) incorporates rNTPs almost as efficiently as deoxyribonucleotides. To gain insight into how this occurs, here we have used X-ray crystallography to describe the structures of pre- and post-catalytic complexes of Pol μ with a ribonucleotide bound at the active site. These structures reveal that Pol μ binds and incorporates a rNTP with normal active site geometry and no distortion of the DNA substrate or nucleotide. Moreover, a comparison of rNTP incorporation kinetics by wildtype and mutant Pol μ indicates that rNTP accommodation involves synergistic interactions with multiple active site residues not found in polymerases with greater discrimination. Together, the results are consistent with the hypothesis that rNTP incorporation by Pol μ is advantageous in gap-filling synthesis during DNA double strand break repair by nonhomologous end joining, particularly in nonreplicating cells containing very low deoxyribonucleotide concentrations

    Substrate-induced DNA strand misalignment during catalytic cycling by DNA polymerase λ

    Get PDF
    The simple deletion of nucleotides is common in many organisms. It can be advantageous when it activates genes beneficial to microbial survival in adverse environments, and deleterious when it mutates genes relevant to survival, cancer or degenerative diseases. The classical idea is that simple deletions arise by strand slippage. A prime opportunity for slippage occurs during DNA synthesis, but it remains unclear how slippage is controlled during a polymerization cycle. Here, we report crystal structures and molecular dynamics simulations of mutant derivatives of DNA polymerase λ bound to a primer–template during strand slippage. Relative to the primer strand, the template strand is in multiple conformations, indicating intermediates on the pathway to deletion mutagenesis. Consistent with these intermediates, the mutant polymerases generate single-base deletions at high rates. The results indicate that dNTP-induced template strand repositioning during conformational rearrangements in the catalytic cycle is crucial to controlling the rate of strand slippage

    Catalytic mechanism of human DNA polymerase λ with Mg2+ and Mn2+ from ab initio quantum mechanical/molecular mechanical studies

    Get PDF
    DNA polymerases play a crucial role in the cell cycle due to their involvement in genome replication and repair. Understanding the reaction mechanism by which these polymerases carry out their function can provide insights into these processes. Recently, the crystal structures of human DNA polymerase λ (Polλ) have been reported both for pre- and post- catalytic complexes (García-Díaz et al., DNA Repair, 3, 1333, 2007). Here we employ the pre-catalytic complex as a starting structure for the determination of the catalytic mechanism of Polλ using ab initio quantum mechanical/molecular mechanical methods. The reaction path has been calculated using Mg2+ and Mn2+ as the catalytic metals. In both cases the reaction proceeds through a two step mechanism where the 3′-OH of the primer sugar ring is deprotonated by one of the conserved Asp residues (D490) in the active site before the incorporation of the nucleotide to the nascent DNA chain. A significant charge transfer is observed between both metals and some residues in the active site as the reaction proceeds. The optimized reactant and product structures agree with the reported crystal structures. In addition, the calculated reaction barriers for both metals are close to experimentally estimated barriers. Energy decomposition analysis to explain individual residue contributions suggests that several amino acids surrounding the active site are important for catalysis. Some of these residues, including R420, R488 and E529, have been implicated in catalysis by previous mutagenesis experiments on the homologous residues on Polβ. Furthermore, Polλ residues R420 and E529 found to be important from the energy decomposition analysis, are homologous to residues R183 and E295 in Polβ, both of which are linked to cancer. In addition, residues R386, E391, K422 and K472 appear to have an important role in catalysis and could be a potential target for mutagenesis experiments. There is partial conservation of these residues across the Pol X family of DNA polymerases

    La globalización y el malestar en la democracia

    Get PDF
    El origen de este texto es una conferencia en el VII Congreso de la FES (Salamanca, 20-22 de septiembre de 2001) con el título "Estados, mercados y ciudadanía". Publicado en: Revista Internacional de Filosofía Política, 20: 5-24, 2002.En años recientes se ha convertido en un lugar común la idea de que los ciudadanos de los países democráticos, independientemente de que apoyen esta forma de gobierno por encima de cualquier otra, otorgan un nivel de confianza muy bajo a las instituciones de la democracia representativa, desde los partidos y los parlamentos hasta los gobiernos (Nye et al., 1997; Norris, 1999; Pharr y Putnam, 2000). En América Latina, además, los alarmantes resultados del Latinobarómetro de 2001 (Economist, 2001) hicieron temer que, ante la mala marcha de la economía, la insatisfacción de los ciudadanos pudiera conducir de forma imparable a la erosión del apoyo a la propia democracia.Proyecto Desconfianza Política y Gobernación Democrática (BSO2000- 1082) del Plan Nacional de I+D (Ministerio de Ciencia y Tecnología, España)Peer reviewe

    Characterization of a Natural Mutator Variant of Human DNA Polymerase l which Promotes Chromosomal Instability by Compromising NHEJ

    Get PDF
    PLoS ONE 4(10): e7290.Background: DNA polymerase lambda (Poll) is a DNA repair polymerase, which likely plays a role in base excision repair (BER) and in non-homologous end joining (NHEJ) of DNA double-strand breaks (DSB). Principal Findings: Here, we described a novel natural allelic variant of human Poll (hPoll) characterized by a single nucleotide polymorphism (SNP), C/T variation in the first base of codon 438, resulting in the amino acid change Arg to Trp. In vitro enzyme activity assays of the purified W438 Poll variant revealed that it retained both DNA polymerization and deoxyribose phosphate (dRP) lyase activities, but had reduced base substitution fidelity. Ectopic expression of the W438 hPoll variant in mammalian cells increases mutation frequency, affects the DSB repair NHEJ pathway, and generates chromosome aberrations. All these phenotypes are dependent upon the catalytic activity of the W438 hPoll. Conclusions: The expression of a cancer-related natural variant of one specialized DNA polymerase can be associated to generic instability at the cromosomal level, probably due a defective NHEJ. These results establish that chromosomal aberrations can result from mutations in specialized DNA repair polymerases.This work was supported by Ministerio de Ciencia y Tecnologia Grants BFU2006-14390/BMC, CONSOLIDER CSD2007-00015 and Comunidad Autonoma de Madrid Grants P2006/BIO-0306 to L.B., by INCa ‘‘Checkpol’’, ARC, and ‘‘Ligue contre le Cancer (Region Midi-Pyrenees)’’ to J-S.H., by the Division of Intramural Research, NIEHS, NIH, DHHS to T.A.K., by SAF2002-02265 to A.V., and by an institutional grant to Centro de Biologia Molecular ‘‘Severo Ochoa’’ from Fundacion Ramon Areces. G.T. was recipient of a fellowship from the Ministerio de Educacion y Ciencia. A.V. is an Investigator of the Ramon y Cajal ProgramPeer reviewe

    DNA polymerase λ, a novel DNA repair enzyme in human cells

    Get PDF
    DNA polymerase lambda (pol λ) is a novel family X DNA polymerase that has been suggested to play a role in meiotic recombination and DNA repair. The recent demonstration of an intrinsic 5′-deoxyribose-5-phosphate lyase activity in pol λ supports a function of this enzyme in base excision repair. However, the biochemical properties of the polymerization activity of this enzyme are still largely unknown. We have cloned and purified human pol λ to homogeneity in a soluble and active form, and we present here a biochemical description of its polymerization features. In support of a role in DNA repair, pol λ inserts nucleotides in a DNA template-dependent manner and is processive in small gaps containing a 5′-phosphate group. These properties, together with its nucleotide insertion fidelity parameters and lack of proofreading activity, indicate that pol λ is a novel β-like DNA polymerase. However, the high affinity of pol λ for dNTPs (37-fold over pol β) is consistent with its possible involvement in DNA transactions occurring under low cellular levels of dNTPs. This suggests that, despite their similarities, pol β and pol λ have nonredundant in vivo functions.This work was supported by Ministerio de Ciencia y Tecnologı´a Grant BMC2000-1138, Comunidad Auto´noma de Madrid Grant 08.5/0063/2000 (to L. B.) and by an institutional grant from Fundacio´n Ramo´n Areces

    Sustained active site rigidity during synthesis by human DNA polymerase μ

    Get PDF
    DNA polymerase mu (Pol μ) is the only template-dependent human DNA polymerase capable of repairing double strand DNA breaks (DSBs) with unpaired 3′-ends in non-homologous end joining (NHEJ). To probe this function, we structurally characterized Pol μ’s catalytic cycle for single nucleotide incorporation. These structures indicate that, unlike other template-dependent DNA polymerases, there are no large-scale conformational changes in protein subdomains, amino acid side chains, or DNA upon dNTP binding or catalysis. Instead, the only major conformational change is seen earlier in the catalytic cycle, when the flexible Loop1 region repositions upon DNA binding. Pol μ variants with changes in Loop1 have altered catalytic properties and are partially defective in NHEJ. The results indicate that specific Loop1 residues contribute to Pol μ’s unique ability to catalyze template-dependent NHEJ of DSBs with unpaired 3′-ends

    DNA polymerase λ, a novel DNA repair enzyme in human cells

    Get PDF
    DNA polymerase lambda (pol λ) is a novel family X DNA polymerase that has been suggested to play a role in meiotic recombination and DNA repair. The recent demonstration of an intrinsic 5′-deoxyribose-5-phosphate lyase activity in pol A supports a function of this enzyme in base excision repair. However, the biochemical properties of the polymerization activity of this enzyme are still largely unknown. We have cloned and purified human pol A to homogeneity in a soluble and active form, and we present here a biochemical description of its polymerization features. In support of a role in DNA repair, pol λ inserts nucleotides in a DNA template-dependent manner and is processive in small gaps containing a 5′-phosphate group. These properties, together with its nucleotide insertion fidelity parameters and lack of proofreading activity, indicate that pol A is a novel β-like DNA polymerase. However, the high affinity of pol λ for dNTPs (37-fold over pol β) is consistent with its possible involvement in DNA transactions occurring under low cellular levels of dNTPs. This suggests that, despite their similarities, pol β and pol λ have nonredundant in vivo function
    corecore