6 research outputs found

    Casein phosphopeptides drastically increase the secretion of extracellular proteins in Aspergillus awamori. Proteomics studies reveal changes in the secretory pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The secretion of heterologous animal proteins in filamentous fungi is usually limited by bottlenecks in the vesicle-mediated secretory pathway.</p> <p>Results</p> <p>Using the secretion of bovine chymosin in <it>Aspergillus awamori </it>as a model, we found a drastic increase (40 to 80-fold) in cells grown with casein or casein phosphopeptides (CPPs). CPPs are rich in phosphoserine, but phosphoserine itself did not increase the secretion of chymosin. The stimulatory effect is reduced about 50% using partially dephosphorylated casein and is not exerted by casamino acids. The phosphopeptides effect was not exerted at transcriptional level, but instead, it was clearly observed on the secretion of chymosin by immunodetection analysis. Proteomics studies revealed very interesting metabolic changes in response to phosphopeptides supplementation. The oxidative metabolism was reduced, since enzymes involved in fermentative processes were overrepresented. An oxygen-binding hemoglobin-like protein was overrepresented in the proteome following phosphopeptides addition. Most interestingly, the intracellular pre-protein enzymes, including pre-prochymosin, were depleted (most of them are underrepresented in the intracellular proteome after the addition of CPPs), whereas the extracellular mature form of several of these secretable proteins and cell-wall biosynthetic enzymes was greatly overrepresented in the secretome of phosphopeptides-supplemented cells. Another important 'moonlighting' protein (glyceraldehyde-3-phosphate dehydrogenase), which has been described to have vesicle fusogenic and cytoskeleton formation modulating activities, was clearly overrepresented in phosphopeptides-supplemented cells.</p> <p>Conclusions</p> <p>In summary, CPPs cause the reprogramming of cellular metabolism, which leads to massive secretion of extracellular proteins.</p

    Biotechnological Fungal Platforms for the Production of Biosynthetic Cannabinoids

    No full text
    Cannabinoids are bioactive meroterpenoids comprising prenylated polyketide molecules that can modulate a wide range of physiological processes. Cannabinoids have been shown to possess various medical/therapeutic effects, such as anti-convulsive, anti-anxiety, anti-psychotic, antinausea, and anti-microbial properties. The increasing interest in their beneficial effects and application as clinically useful drugs has promoted the development of heterologous biosynthetic platforms for the industrial production of these compounds. This approach can help circumvent the drawbacks associated with extraction from naturally occurring plants or chemical synthesis. In this review, we provide an overview of the fungal platforms developed by genetic engineering for the biosynthetic production of cannabinoids. Different yeast species, such as Komagataella phaffii (formerly P. pastoris) and Saccharomyces cerevisiae, have been genetically modified to include the cannabinoid biosynthetic pathway and to improve metabolic fluxes in order to increase cannabinoid titers. In addition, we engineered the filamentous fungus Penicillium chrysogenum for the first time as a host microorganism for the production of &Delta;9-tetrahydrocannabinolic acid from intermediates (cannabigerolic acid and olivetolic acid), thereby showing the potential of filamentous fungi as alternative platforms for cannabinoid biosynthesis upon optimization

    Characterization of the Gene Encoding S-adenosyl-L-methionine (AdoMet) Synthetase in Penicillium chrysogenum; Role in Secondary Metabolism and Penicillin Production

    No full text
    The filamentous fungus Penicillium chrysogenum (recently reidentified as Penicillium rubens) is used in the industrial production of the &beta;-lactam antibiotic penicillin. There are several mechanisms regulating the production of this antibiotic, acting both at the genetic and epigenetic levels, the latter including the modification of chromatin by methyltransferases. S-adenosyl-L-methionine (AdoMet) is the main donor of methyl groups for methyltransferases. In addition, it also acts as a donor of aminopropyl groups during the biosynthesis of polyamines. AdoMet is synthesized from L-methionine and ATP by AdoMet-synthetase. In silico analysis of the P. chrysogenum genome revealed the presence of a single gene (Pc16g04380) encoding a putative protein with high similarity to well-known AdoMet-synthetases. Due to the essential nature of this gene, functional analysis was carried out using RNAi-mediated silencing techniques. Knock-down transformants exhibited a decrease in AdoMet, S-adenosyl-L-homocysteine (AdoHcy), spermidine and benzylpenicillin levels, whereas they accumulated a yellow-orange pigment in submerged cultures. On the other hand, overexpression led to reduced levels of benzylpenicillin, thereby suggesting that the AdoMet synthetase, in addition to participate in primary metabolism, also controls secondary metabolism in P. chrysogenum
    corecore